The dramatic effectiveness of recent mRNA (mRNA)-based COVID vaccines delivered in lipid nanoparticles has highlighted the promise of mRNA therapeutics in general. In this report, we extend our earlier work on self-amplifying mRNAs delivered in spherical reconstituted virus-like particles (VLPs), and on drug delivery using cylindrical virus particles. In particular, we carry out separate assemblies of a self-amplifying mRNA gene in two different virus-like particles: one spherical, formed with the capsid protein of cowpea chlorotic mottle virus (CCMV), and the other cylindrical, formed from the capsid protein of tobacco mosaic virus (TMV).
View Article and Find Full Text PDFIn the presence of polyvalent cations, long double-stranded DNA (dsDNA) in dilute solution undergoes a single-molecule, first-order, phase transition ("condensation"), a phenomenon that has been documented and analyzed by many years of experimental and theoretical studies. There has been no systematic effort, however, to determine whether long single-stranded RNA (ssRNA) shows an analogous behavior. In this study, using dynamic light scattering, analytical ultracentrifugation, and gel electrophoresis, we examine the effects of increasing polyvalent cation concentrations on the effective size of long ssRNAs ranging from 3000 to 12,000 nucleotides.
View Article and Find Full Text PDFDifferent types of gold nanoparticles have been synthesized that show great potential in medical applications such as medical imaging, bio-analytical sensing and photothermal cancer therapy. However, their stability, polydispersity and biocompatibility are major issues of concern. For example, the synthesis of gold nanorods, obtained through the elongated micelle process, produce them with a high positive surface charge that is cytotoxic, while gold nanoshells are unstable and break down in a few weeks due to the Ostwald ripening process.
View Article and Find Full Text PDFVirus-like particles (VLPs) are being used for therapeutic developments such as vaccines and drug nanocarriers. Among these, plant virus capsids are gaining interest for the formation of VLPs because they can be safely handled and are noncytotoxic. A paradigm in virology, however, is that plant viruses cannot transfect and deliver directly their genetic material or other cargos into mammalian cells.
View Article and Find Full Text PDFUnlike double-stranded DNA, single-stranded RNA can be spontaneously packaged into spherical capsids by viral capsid protein (CP) because it is a more compact and flexible polymer. Many systematic investigations of this self-assembly process have been carried out using CP from cowpea chlorotic mottle virus, with a wide range of sequences and lengths of single-stranded RNA. Among these studies are measurements of the relative packaging efficiencies of these RNAs into spherical capsids.
View Article and Find Full Text PDFThe assembly of most single-stranded RNA (ssRNA) viruses into icosahedral nucleocapsids is a spontaneous process driven by protein-protein and RNA-protein interactions. The precise nature of these interactions results in the assembly of extremely monodisperse and structurally indistinguishable nucleocapsids. In this work, by using a ssRNA plant virus (cowpea chlorotic mottle virus [CCMV]) as a charged nanoparticle we show that the diffusion of these nanoparticles from the bulk solution to the air/water interface is an irreversible adsorption process.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome virus (PRRSV) significantly affects the swine industry worldwide. An efficient, protective vaccine is still lacking. Here, we report for the first time the generation and purification of PRRSV virus like particles (VLPs) by expressing GP5, M and N genes in Nicotiana silvestris plants.
View Article and Find Full Text PDF