Engagement is an important component in the advancement of gene-drive vector control research programs as developers look to transition the technology from the laboratory to the field. As research advances and engagement surrounding this novel technology is put into practice, knowledge can be gained from practical experiences and applications in the field. A relationship-based model (RBM) provides a framework for end-user development of engagement programs and strategies.
View Article and Find Full Text PDFThe field-testing and eventual adoption of genetically-engineered mosquitoes (GEMs) to control vector-borne pathogen transmission will require them meeting safety criteria specified by regulatory authorities in regions where the technology is being considered for use and other locales that might be impacted. Preliminary risk considerations by researchers and developers may be useful for planning the baseline data collection and field research used to address the anticipated safety concerns. Part of this process is to identify potential hazards (defined as the inherent ability of an entity to cause harm) and their harms, and then chart the pathways to harm and evaluate their probability as part of a risk assessment.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2022
Progress in gene-drive research has stimulated discussion and debate on ethical issues including community engagement and consent, policy and governance, and decision-making involved in development and deployment. Many organizations, academic institutions, foundations, and individual professionals have contributed to ensuring that these issues are considered prior to the application of gene-drive technology. Central topics include co-development of the technology with local stakeholders and communities and reducing asymmetry between developers and end-users.
View Article and Find Full Text PDFNovel malaria control strategies using genetically engineered mosquitoes (GEMs) are on the horizon. Population modification is one approach wherein mosquitoes are engineered with genes rendering them refractory to the malaria parasite, , coupled with a low-threshold, Cas9-based gene drive. When released into a wild vector population, GEMs preferentially transmit these parasite-blocking genes to their offspring, ultimately modifying a vector population into a nonvector one.
View Article and Find Full Text PDFGene drive research is progressing towards future field evaluation of modified mosquitoes for malaria control in sub-Saharan Africa. While many literature sources and guidance point to the inadequacy of individual informed consent for any genetically modified mosquito release, including gene drive ones, (outside of epidemiological studies that might require blood samples) and at the need for a community-level decision, researchers often find themselves with no specific guidance on how that decision should be made, expressed and by whom. Target Malaria, the Kenya Medical Research Institute and the Pan African Mosquito Control Association co-organised a workshop with researchers and practitioners on this topic to question the model proposed by Target Malaria in its research so far that involved the release of genetically modified sterile male mosquitoes and how this could be adapted to future studies involving gene drive mosquito releases for them to offer reflections about potential best practices.
View Article and Find Full Text PDFThe transition of new technologies for public health from laboratory to field is accompanied by a broadening scope of engagement challenges. Recent developments of vector control strategies involving genetically engineered mosquitoes with gene drives to assist in the eradication of malaria have drawn significant attention. Notably, questions have arisen surrounding community and regulatory engagement activities and of the need for examples of models or frameworks that can be applied to guide engagement.
View Article and Find Full Text PDF