DNAJC12, a type III member of the HSP40/DNAJ family, has been identified as the specific co-chaperone of phenylalanine hydroxylase (PAH) and the other aromatic amino acid hydroxylases. DNAJ proteins work together with molecular chaperones of the HSP70 family to assist in proper folding and maintenance of intracellular stability of their clients. Autosomal recessive mutations in DNAJC12 were found to reduce PAH levels, leading to hyperphenylalaninemia (HPA) in patients without mutations in PAH.
View Article and Find Full Text PDFEnzyme replacement therapy (ERT) is a therapeutic approach envisioned decades ago for the correction of genetic disorders, but ERT has been less successful for the correction of disorders with neurological manifestations. In this work, we have tested the functionality of nanoparticles (NP) composed of maltodextrin with a lipid core to bind and stabilize tyrosine hydroxylase (TH). This is a complex and unstable brain enzyme that catalyzes the rate-limiting step in the synthesis of dopamine and other catecholamine neurotransmitters.
View Article and Find Full Text PDFTyrosine hydroxylase (TH) catalyzes the conversion of l-tyrosine into l-DOPA, which is the rate-limiting step in the synthesis of catecholamines, such as dopamine, in dopaminergergic neurons. Low dopamine levels and death of the dopaminergic neurons are hallmarks of Parkinson's disease (PD), where α-synuclein is also a key player. TH is highly regulated, notably by phosphorylation of several Ser/Thr residues in the N-terminal tail.
View Article and Find Full Text PDFTyrosine hydroxylase (TH), a rate-limiting enzyme in the synthesis of catecholamine neurotransmitters and hormones, binds to negatively charged phospholipid membranes. Binding to both large and giant unilamellar vesicles causes membrane permeabilization, as observed by efflux and influx of fluorescence dyes. Whereas the initial protein-membrane interaction involves the N-terminal tail that constitutes an extension of the regulatory ACT-domain, prolonged membrane binding induces misfolding and self-oligomerization of TH over time as shown by circular dichroism and Thioflavin T fluorescence.
View Article and Find Full Text PDFThe aromatic amino acid hydroxylase (AAAH) enzyme family includes phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH) and the tryptophan hydroxylases (TPH1 and TPH2). All four members of the AAAH family require iron, dioxygen and the cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) to hydroxylate their respective substrates. The AAAHs are involved in severe diseases; whereas polymorphisms and variants in the TPH genes are associated to neuropsychiatric disorders, mutations in PAH and TH are responsible for the autosomal recessive disorders phenylketonuria (PKU) and TH deficiency (THD), respectively.
View Article and Find Full Text PDFTyrosine hydroxylase (TH) is regulated by members of the 14-3-3 protein family. However, knowledge about the variation between 14-3-3 proteins in their regulation of TH is still limited. We examined the binding, effects on activation and dephosphorylation kinetics of tyrosine hydroxylase (TH) by abundant midbrain 14-3-3 proteins (β, η, ζ, γ and ε) of different dimer composition.
View Article and Find Full Text PDFPharmacological chaperones are small compounds that correct the folding of mutant proteins, and represent a promising therapeutic strategy for misfolding diseases. We have performed a screening of 10,000 compounds searching for pharmacological chaperones of tyrosine hydroxylase (TH), the tetrahydrobiopterin (BH4)-dependent enzyme that catalyzes the rate-limiting step in the synthesis of catecholamines. A large number of compounds bound to human TH, isoform 1 (hTH1), but only twelve significantly protected wild-type (hTH1-wt) and mutant TH-R233H (hTH1-p.
View Article and Find Full Text PDFPhosphorylated tyrosine hydroxylase (TH) can form complexes with 14-3-3 proteins, resulting in enzyme activation and stabilization. Although TH was among the first binding partners identified for these ubiquitous regulatory proteins, the binding stoichiometry and the activation mechanism remain unknown. To address this, we performed native mass spectrometry analyses of human TH (nonphosphorylated or phosphorylated on Ser19 (TH-pS19), Ser40 (TH-pS40), or Ser19 and Ser40 (TH-pS19pS40)) alone and together with 14-3-3γ.
View Article and Find Full Text PDFAn increased reactive oxygen species (ROS) production and apoptosis rate have been associated with several disorders involved in cobalamin metabolism, including isolated methylmalonic aciduria (MMA) cblB type and MMA combined with homocystinuria (MMAHC) cblC type. Given the relevance of p38 and JNK kinases in stress-response, their activation in fibroblasts from a spectrum of patients (mut, cblA, cblB, cblC and cblE) was analyzed revealing an increased expression of the phosphorylated-forms, specially in cblB and cblC cell lines that presented the highest ROS and apoptosis levels. To gain further insight into the molecular mechanisms responsible for the enhanced apoptotic process observed in cblB and cblC fibroblasts, we evaluated the expression pattern of 84 apoptosis-related genes by quantitative real-time PCR.
View Article and Find Full Text PDFMethylmalonic aciduria (MMA) cobalamin deficiency type C (cblC) with homocystinuria (MMACHC) is the most frequent genetic disorder of vitamin B(12) metabolism. The aim of this work was to identify the mutational spectrum in a cohort of cblC-affected patients and the analysis of the cellular oxidative stress and apoptosis processes, in the presence or absence of vitamin B(12). The mutational spectrum includes nine previously described mutations: c.
View Article and Find Full Text PDF