Lithotripsy methods show relatively low efficiency in the fragmentation of sialoliths compared with the success rates achieved in the destruction of renal calculi. However, the information available on the mechanical behavior of sialoliths is limited and their apparently tougher response is not fully understood. This work evaluates the hardness and Young's modulus of sialoliths at different scales and analyzes specific damage patterns induced in these calcified structures by ultrasonic vibrations, pneumoballistic impacts, shock waves, and laser ablation.
View Article and Find Full Text PDFTheories have been put forward on the etiology of sialoliths; however, a comprehensive understanding of their growth mechanisms is lacking. In an attempt to fill this gap, the current study has evaluated the internal architecture and growth patterns of a set of 30 independent specimens of sialoliths characterized at different scales by computed microtomography and electron microscopy. Tomography reconstructions showed cores in most of the sialoliths.
View Article and Find Full Text PDF