Publications by authors named "Ana I de Castro"

Crop protection is a key activity for the sustainability and feasibility of agriculture in a current context of climate change, which is causing the destabilization of agricultural practices and an increase in the incidence of current or invasive pests, and a growing world population that requires guaranteeing the food supply chain and ensuring food security. In view of these events, this article provides a contextual review in six sections on the role of artificial intelligence (AI), machine learning (ML) and other emerging technologies to solve current and future challenges of crop protection. Over time, crop protection has progressed from a primitive agriculture 1.

View Article and Find Full Text PDF

Background: Almond is an emerging crop due to the health benefits of almond consumption including nutritional, anti-inflammatory, and hypocholesterolaemia properties. Traditional almond producers were concentrated in California, Australia, and Mediterranean countries. However, almond is currently present in more than 50 countries due to breeding programs have modernized almond orchards by developing new varieties with improved traits related to late flowering (to reduce the risk of damage caused by late frosts) and tree architecture.

View Article and Find Full Text PDF

The need for the olive farm modernization have encouraged the research of more efficient crop management strategies through cross-breeding programs to release new olive cultivars more suitable for mechanization and use in intensive orchards, with high quality production and resistance to biotic and abiotic stresses. The advancement of breeding programs are hampered by the lack of efficient phenotyping methods to quickly and accurately acquire crop traits such as morphological attributes (tree vigor and vegetative growth habits), which are key to identify desirable genotypes as early as possible. In this context, an UAV-based high-throughput system for olive breeding program applications was developed to extract tree traits in large-scale phenotyping studies under field conditions.

View Article and Find Full Text PDF

Bioethanol production obtained from cereal straw has aroused great interest in recent years, which has led to the development of breeding programs to improve the quality of lignocellulosic material in terms of the biomass and sugar content. This process requires the analysis of genotype-phenotype relationships, and although genotyping tools are very advanced, phenotypic tools are not usually capable of satisfying the massive evaluation that is required to identify potential characters for bioethanol production in field trials. However, unmanned aerial vehicle (UAV) platforms have demonstrated their capacity for efficient and non-destructive acquisition of crop data with an application in high-throughput phenotyping.

View Article and Find Full Text PDF
Article Synopsis
  • Several diseases are impacting tomato production in Florida, particularly affecting fresh markets and causing significant losses.
  • A study used a portable spectral sensor to analyze tomato leaves at various disease stages, including healthy and early stages, to assess detection feasibility.
  • The results showed that healthy leaves could be accurately classified, while late-stage diseased leaves were easier to identify than early-stage diseased ones, suggesting potential for developing an image monitoring system for tomato plants.
View Article and Find Full Text PDF

Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area.

View Article and Find Full Text PDF

In order to optimize the application of herbicides in weed-crop systems, accurate and timely weed maps of the crop-field are required. In this context, this investigation quantified the efficacy and limitations of remote images collected with an unmanned aerial vehicle (UAV) for early detection of weed seedlings. The ability to discriminate weeds was significantly affected by the imagery spectral (type of camera), spatial (flight altitude) and temporal (the date of the study) resolutions.

View Article and Find Full Text PDF

A procedure to achieve the semi-automatic relative image normalization of multitemporal remote images of an agricultural scene called ARIN was developed using the following procedures: 1) defining the same parcel of selected vegetative pseudo-invariant features (VPIFs) in each multitemporal image; 2) extracting data concerning the VPIF spectral bands from each image; 3) calculating the correction factors (CFs) for each image band to fit each image band to the average value of the image series; and 4) obtaining the normalized images by linear transformation of each original image band through the corresponding CF. ARIN software was developed to semi-automatically perform the ARIN procedure. We have validated ARIN using seven GeoEye-1 satellite images taken over the same location in Southern Spain from early April to October 2010 at an interval of approximately 3 to 4 weeks.

View Article and Find Full Text PDF

The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near-infrared range) with the ultimate objective of generating a weed map in an experimental maize field in Spain. The OBIA procedure combines several contextual, hierarchical and object-based features and consists of three consecutive phases: 1) classification of crop rows by application of a dynamic and auto-adaptive classification approach, 2) discrimination of crops and weeds on the basis of their relative positions with reference to the crop rows, and 3) generation of a weed infestation map in a grid structure.

View Article and Find Full Text PDF

A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated.

View Article and Find Full Text PDF