Organoid 3D systems are powerful platforms to study development and disease. Recently, the complexity of lung organoid models derived from adult mouse and human stem cells has increased substantially in terms of cellular composition and structural complexity. However, a murine lung organoid system with a clear integrated endothelial compartment is still missing.
View Article and Find Full Text PDFOrganoid models have become an integral part of the research methodology in the lung field. These systems allow for the study of progenitor and stem cell self-renewal, self-organization, and differentiation. Distinct models of lung organoids mimicking various anatomical regions of mature lungs have emerged in parallel to the increased gain of knowledge regarding epithelial stem and progenitor cell populations and the corresponding mesenchymal cells that populate the in vivo niche.
View Article and Find Full Text PDFBackground: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs).
Methods: mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature.
Influenza A virus (IAV) infection mobilizes bone marrow-derived macrophages (BMDM) that gradually undergo transition to tissue-resident alveolar macrophages (TR-AM) in the inflamed lung. Combining high-dimensional single-cell transcriptomics with complex lung organoid modeling, in vivo adoptive cell transfer, and BMDM-specific gene targeting, we found that transitioning ("regenerative") BMDM and TR-AM highly express Placenta-expressed transcript 1 (Plet1). We reveal that Plet1 is released from alveolar macrophages, and acts as important mediator of macrophage-epithelial cross-talk during lung repair by inducing proliferation of alveolar epithelial cells and re-sealing of the epithelial barrier.
View Article and Find Full Text PDFOver the last decade, several organoid models have evolved to acquire increasing cellular, structural, and functional complexity. Advanced lung organoid platforms derived from various sources, including adult, fetal, and induced pluripotent stem cells, have now been generated, which more closely mimic the cellular architecture found within the airways and alveoli. In this regard, the establishment of novel protocols with optimized stem cell isolation and culture conditions has given rise to an array of models able to study key cellular and molecular players involved in lung injury and repair.
View Article and Find Full Text PDFThe specification, characterization, and fate of alveolar type 1 and type 2 (AT1 and AT2) progenitors during embryonic lung development are poorly defined. Current models of distal epithelial lineage formation fail to capture the heterogeneity and dynamic contribution of progenitor pools present during early development. Furthermore, few studies explore the pathways involved in alveolar progenitor specification and fate.
View Article and Find Full Text PDFRepair-supportive mesenchymal cells (RSMCs) have been recently reported in the context of naphthalene (NA)-induced airway injury and regeneration. These cells transiently express smooth muscle actin (Acta2) and are enriched with platelet-derived growth factor receptor alpha (Pdgfra) and fibroblast growth factor 10 (Fgf10) expression. Genetic deletion of Ctnnb1 (gene coding for beta catenin) or Fgf10 in these cells using the Acta2-Cre-ERT2 driver line after injury (defined as NA-Tam condition; Tam refers to tamoxifen) led to impaired repair of the airway epithelium.
View Article and Find Full Text PDFInsulin-like growth factor (IGF) signaling controls the development and growth of many organs, including the lung. Loss of function of or its receptor impairs lung development and leads to neonatal respiratory distress in mice. Although many components of the IGF signaling pathway have shown to be dysregulated in idiopathic pulmonary fibrosis (IPF), the expression pattern of such components in different cellular compartments of the developing and/or fibrotic lung has been elusive.
View Article and Find Full Text PDFFibroblast growth factor receptor 2b (Fgfr2b) signaling is essential throughout lung development to form the alveolar epithelial lineage. However, its role in alveolar epithelial type 2 cells (AT2s) homeostasis was recently considered dispensable. Sftpc; Fgfr2b; tdTomato mice were used to delete Fgfr2b expression in cells belonging to the AT2 lineage, which contains mature AT2s and a novel Sftpc lineage-traced population called "injury activated alveolar progenitors" or IAAPs.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive and often lethal interstitial lung disease of unknown aetiology. IPF is characterised by myofibroblast activation, tissue stiffening, and alveolar epithelium injury. As current IPF treatments fail to halt disease progression or induce regeneration, there is a pressing need for the development of novel therapeutic targets.
View Article and Find Full Text PDFBronchopulmonary dysplasia (BPD) is a neonatal lung disease developing in premature babies characterized by arrested alveologenesis and associated with decreased Fibroblast growth factor 10 (FGF10) expression. One-week hyperoxia (HYX) exposure of newborn mice leads to a permanent arrest in alveologenesis. To test the role of Fgf10 signaling to promote de novo alveologenesis following hyperoxia, we used transgenic mice allowing inducible expression of Fgf10 and recombinant FGF10 (rFGF10) protein delivered intraperitoneally.
View Article and Find Full Text PDFOrganoid models have been shown to be valuable tools for studying epithelial-mesenchymal crosstalk during biological and pathological settings. Our data identified ACTA2+ PDGFRα+ repair-supportive mesenchymal cells as an important component of the conducting airway niche. Here, we provide a detailed protocol for culturing airway organoids, or bronchiolospheres, which provide an assessment of the ability of mesenchymal cells to support club-cell growth.
View Article and Find Full Text PDFis a key gene during development, homeostasis and repair after injury. We previously reported a knock-in line (with the Cre-ERT2 cassette inserted in frame with the start codon of exon 1), called thereafter , to target FGF10 cells. While this line allowed fairly efficient and specific labeling of FGF10 cells during the embryonic stage, it failed to target these cells after birth, particularly in the postnatal lung, which has been the focus of our research.
View Article and Find Full Text PDFResident mesenchymal cells (rMCs defined as Cd31 Cd45 Epcam ) control the proliferation and differentiation of alveolar epithelial type 2 (AT2) stem cells in vitro. The identity of these rMCs is still elusive. Among them, Axin2 mesenchymal alveolar niche cells (MANCs), which are expressing Fgf7, have been previously described.
View Article and Find Full Text PDFAlveolar type 2 (AT2) cells are heterogeneous cells, with specialised AT2 subpopulations within this lineage exhibiting stem cell properties. However, the existence of quiescent, immature cells within the AT2 lineage that are activated during lung regeneration is unknown. mice were used for the labelling of AT2 cells and labelled subpopulations were analysed by flow cytometry, quantitative PCR, assay for transposase-accessible chromatin using sequencing (ATAC-seq), gene arrays, pneumonectomy and culture of precision-cut lung slices.
View Article and Find Full Text PDFThree-dimensional (3D) organoid culture systems have rapidly emerged as powerful tools to study organ development and disease. The lung is a complex and highly specialized organ that comprises more than 40 cell types that offer several region-specific roles. During organogenesis, the lung goes through sequential and morphologically distinctive stages to assume its mature form, both structurally and functionally.
View Article and Find Full Text PDFBackground: The technology of single cell RNA sequencing (scRNA-seq) has gained massively in popularity as it allows unprecedented insights into cellular heterogeneity as well as identification and characterization of (sub-)cellular populations. Furthermore, scRNA-seq is almost ubiquitously applicable in medical and biological research. However, these new opportunities are accompanied by additional challenges for researchers regarding data analysis, as advanced technical expertise is required in using bioinformatic software.
View Article and Find Full Text PDFTissue regeneration requires coordinated and dynamic remodeling of stem and progenitor cells and the surrounding niche. Although the plasticity of epithelial cells has been well explored in many tissues, the dynamic changes occurring in niche cells remain elusive. Here, we show that, during lung repair after naphthalene injury, a population of PDGFRα cells emerges in the non-cartilaginous conducting airway niche, which is normally populated by airway smooth muscle cells (ASMCs).
View Article and Find Full Text PDFOrganoids derived from mouse and human stem cells have recently emerged as a powerful tool to study organ development and disease. We here established a three-dimensional (3D) murine bronchioalveolar lung organoid (BALO) model that allows clonal expansion and self-organization of FACS-sorted bronchioalveolar stem cells (BASCs) upon co-culture with lung-resident mesenchymal cells. BALOs yield a highly branched 3D structure within 21 days of culture, mimicking the cellular composition of the bronchioalveolar compartment as defined by single-cell RNA sequencing and fluorescence as well as electron microscopic phenotyping.
View Article and Find Full Text PDFCells
May 2020
Branching morphogenesis is the basic developmental mode common to organs such as the lungs that undergo a process of ramification from a rudimentary tree. However, the precise molecular and cellular bases underlying the formation of branching organs are still unclear. As inactivation of fibroblast growth factor receptor 2b (Fgfr2b) signaling during early development leads to lung agenesis, thereby preventing the analysis of this pathway at later developmental stages, we used transgenic mice to induce expression of a soluble form of Fgfr2b to inactivate Fgfr2b ligands at embryonic day (E) 14.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a fatal disease in which the intricate alveolar network of the lung is progressively replaced by fibrotic scars. Myofibroblasts are the effector cells that excessively deposit extracellular matrix proteins thus compromising lung structure and function. Emerging literature suggests a correlation between fibrosis and metabolic alterations in IPF.
View Article and Find Full Text PDFBronchioalveolar stem cells (BASCs) are a potential source for lung regeneration, but direct evidence for a multipotential lineage contribution during homeostasis and disease is critically missing, since specific genetic labeling of BASCs has not been possible. We developed a novel cell tracing approach based on intein-mediated assembly of newly engineered split-effectors, allowing selective targeting of dual-marker expressing BASCs in the mouse lung. RNA sequencing of isolated BASCs demonstrates that BASCs show a distinct transcriptional profile, characterized by co-expression of bronchiolar and alveolar epithelial genes.
View Article and Find Full Text PDFThe respiratory epithelium arises from alveolar epithelial progenitors which differentiate into alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. AT2 cells are stem cells in the lung critical for the repair process after injury. Mechanisms regulating AT1 and AT2 cell maturation are poorly defined.
View Article and Find Full Text PDF