The death of hair cells and damage of natural tip links is one of the main causes of hearing-loss disability, and the development of an advanced artificial hearing aid holds the key to assisting those suffering from hearing loss. This study demonstrates the potential of using electrospun polyvinylidene fluoride (PVDF) fibers to serve as the artificial tip links, for long-term hearing-aid-device development based on their piezoelectric properties. We have shown that the electrospun PVDF-fiber web, consisting of fibers ranging from 30-220 nm in diameter with high β-phase content, possesses the high piezoresponse of 170 mV.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2020
Graphene-coated polypropylene (PP) textile fibers are presented for their use as temperature sensors. These temperature sensors show a negative thermal coefficient of resistance (TCR) in a range between 30 and 45 °C with good sensitivity and reliability and can operate at voltages as low as 1 V. The analysis of the transient response of the temperature on resistance of different types of graphene produced by chemical vapor deposition (CVD) and shear exfoliation of graphite (SEG) shows that trilayer graphene (TLG) grown on copper by CVD displays better sensitivity due to the better thickness uniformity of the film and that carbon paste provides good contact for the measurements.
View Article and Find Full Text PDFOne of the main advantages of 2D materials for various applications is that they can be prepared in form of water-based solutions. The high yield and cost-effectiveness of this method make them of great interest for printed electronics, composites, and bio- and healthcare technologies. However, once deposited on a substrate, etching away these solution-processed materials is a difficult task, yet crucial for pattern definition and thus device fabrication.
View Article and Find Full Text PDFWearable technologies are driving current research efforts to self-powered electronics, for which novel high-performance materials such as graphene and low-cost fabrication processes are highly sought.The integration of high-quality graphene films obtained from scalable water processing approaches in emerging applications for flexible and wearable electronics is demonstrated. A novel method for the assembly of shear exfoliated graphene in water, comprising a direct transfer process assisted by evaporation of isopropyl alcohol is developed.
View Article and Find Full Text PDFConducting fibres are essential to the development of e-textiles. We demonstrate a method to make common insulating textile fibres conductive, by coating them with graphene. The resulting fibres display sheet resistance values as low as 600 Ωsq, demonstrating that the high conductivity of graphene is not lost when transferred to textile fibres.
View Article and Find Full Text PDFExciton diffusion is at the heart of most organic optoelectronic devices' operation, and it is currently the most limiting factor to their achieving high efficiency. It is deeply related to molecular organization, as it depends on intermolecular distances and orbital overlap. However, there is no clear guideline for how to improve exciton diffusion with regard to molecular design and structure.
View Article and Find Full Text PDFThe synthesis and characterization of (α-DT-TTF)2[Au(mnt)2] is reported. The magnetic properties of this new salt show that it is still a rare example of an organic spin-ladder. (α-DT-TTF)2[Au(mnt)2] shares the same ladder structure of the DT-TTF and ETT-TTF analogues, and its room temperature conductivity is ∼2 S/cm.
View Article and Find Full Text PDF