Publications by authors named "Ana I Kuehne"

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tickborne virus that can cause severe disease in humans with case fatality rates of 10%-40%. Although structures of CCHFV glycoproteins GP38 and Gc have provided insights into viral entry and defined epitopes of neutralizing and protective antibodies, the structure of glycoprotein Gn and its interactions with GP38 and Gc have remained elusive. Here, we use structure-guided protein engineering to produce a stabilized GP38-Gn-Gc heterotrimeric glycoprotein complex (GP38-Gn-Gc).

View Article and Find Full Text PDF

Limited knowledge exists on the quality of polyclonal antibody responses generated following Marburg virus (MARV) infection and its evolution in survivors. In this study, we evaluate MARV proteome-wide antibody repertoire longitudinally in convalescent phase approximately every six months for five years following MARV infection in ten human survivors. Differential kinetics were observed for IgM vs IgG vs IgA epitope diversity, antibody binding, antibody affinity maturation and Fc-receptor interaction to MARV proteins.

View Article and Find Full Text PDF

Evaluating the adaptive immune responses to natural infection with Crimean-Congo hemorrhagic fever (CCHF) virus (CCHFV) in human survivors is critical to the development of medical countermeasures. However, the correlates of protection are unknown. As the most prevalent tick-borne human hemorrhagic fever virus with case fatality rates of 5%-30% and worldwide distribution, there is an urgent need to fill these knowledge gaps.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus can cause lethal disease in humans yet there are no approved medical countermeasures. Viral glycoprotein GP38, exclusive to Nairoviridae, is a target of protective antibodies and is a key antigen in preclinical vaccine candidates. Here, we isolate 188 GP38-specific antibodies from human survivors of infection.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen transmitted by tick bites, with no vaccines or specific therapeutics approved to date. Severe disease manifestations include hemorrhage, endothelial dysfunction, and multiorgan failure. Infected cells secrete the viral glycoprotein GP38, whose extracellular function is presently unknown.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus that can cause severe disease in humans with case fatality rates of 10-40%. Although structures of CCHFV glycoproteins GP38 and Gc have provided insights into viral entry and defined epitopes of neutralizing and protective antibodies, the structure of glycoprotein Gn and its interactions with GP38 and Gc have remained elusive. Here, we used structure-guided protein engineering to produce a stabilized GP38-Gn-Gc heterotrimeric glycoprotein complex (GP38-Gn-Gc).

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus can cause lethal disease in humans yet there are no approved medical countermeasures. Viral glycoprotein GP38, unique to , is a target of protective antibodies, but extensive mapping of the human antibody response to GP38 has not been previously performed. Here, we isolated 188 GP38-specific antibodies from human survivors of infection.

View Article and Find Full Text PDF

Background: The critical issues of sustained memory immunity following ebolavirus disease among long-term survivors are still unclear.

Methods: Here, we examine virus-specific immune and inflammatory responses following in vitro challengd in 12 Sudan virus (SUDV) long-term survivors from Uganda's 2000-2001 Gulu outbreak, 15 years after recovery. Total RNA from isolated SUDV-stimulated and unstimulated peripheral blood mononuclear cells was extracted and analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying two viruses, Andes virus (ANDV) and Sin Nombre virus (SNV), which can cause serious illness in people but don't have any approved treatments yet.
  • They found that a protein called Protocadherin-1 (PCDH1) is important for these viruses to enter human cells, meaning it could be a target for new medicines.
  • By changing one tiny part of this protein, researchers were able to protect hamsters from getting sick, suggesting that modifying PCDH1 might help create ways to fight these viruses.
View Article and Find Full Text PDF

Adintrevimab is a human immunoglobulin G1 monoclonal antibody engineered to have broad neutralization against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and other SARS-like coronaviruses with pandemic potential. In both Syrian golden hamster and rhesus macaque models, prophylactic administration of a single dose of adintrevimab provided protection against SARS-CoV-2/WA1/2020 infection in a dose-dependent manner, as measured by significant reductions in lung viral load and virus-induced lung pathology, and by inhibition of viral replication in the upper and lower respiratory tract.

View Article and Find Full Text PDF
Article Synopsis
  • Despite the success of COVID-19 vaccines, there is still a need for additional prevention and treatment methods for at-risk individuals.
  • AZD7442 is a combination of two monoclonal antibodies that target different parts of the SARS-CoV-2 spike protein, effectively neutralizing the virus and preventing its entry into human cells.
  • Clinical studies suggest that AZD7442 can provide long-lasting protection, potentially up to 12 months, especially benefiting those at higher risk for severe COVID-19 outcomes.
View Article and Find Full Text PDF

Multiple agents in the family (filoviruses) are associated with sporadic human outbreaks of highly lethal disease, while others, including several recently identified agents, possess strong zoonotic potential. Although viral glycoprotein (GP)-specific monoclonal antibodies have demonstrated therapeutic utility against filovirus disease, currently FDA-approved molecules lack antiviral breadth. The development of broadly neutralizing antibodies has been challenged by the high sequence divergence among filovirus GPs and the complex GP proteolytic cleavage cascade that accompanies filovirus entry.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV) is a World Health Organization priority pathogen. CCHFV infections cause a highly lethal hemorrhagic fever for which specific treatments and vaccines are urgently needed. Here, we characterize the human immune response to natural CCHFV infection to identify potent neutralizing monoclonal antibodies (nAbs) targeting the viral glycoprotein.

View Article and Find Full Text PDF

Antibody-based therapies are a promising treatment option for managing ebolavirus infections. Several Ebola virus (EBOV)-specific and, more recently, pan-ebolavirus antibody cocktails have been described. Here, we report the development and assessment of a Sudan virus (SUDV)-specific antibody cocktail.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on long-term immune responses in survivors of the Sudan virus (SUDV) outbreak, revealing important insights into antigen-specific cellular immunity that had not been thoroughly explored before.
  • Researchers analyzed blood samples from survivors fifteen years post-infection, discovering sustained CD4+ T cell memory responses primarily related to the nucleoprotein (NP), while CD8+ T cell responses were nearly absent.
  • The findings underscore the significance of specific viral proteins (glycoprotein, nucleoprotein, and VP40) in developing potential vaccines, suggesting that these proteins could emulate natural immune responses in survivors and offer better protection against future infections.
View Article and Find Full Text PDF

The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS). No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1) as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV).

View Article and Find Full Text PDF

Arenaviruses cause fatal hemorrhagic disease in humans. Old World arenavirus glycoproteins (GPs) mainly engage α-dystroglycan as a cell-surface receptor, while New World arenaviruses hijack transferrin receptor. However, the Lujo virus (LUJV) GP does not cluster with New or Old World arenaviruses.

View Article and Find Full Text PDF

Until recently, immune responses in filovirus survivors remained poorly understood. Early studies revealed IgM and IgG responses to infection with various filoviruses, but recent outbreaks have greatly expanded our understanding of filovirus immune responses. Immune responses in survivors of Ebola virus (EBOV) and Sudan virus (SUDV) infections have provided the most insight, with T cell responses as well as detailed antibody responses having been characterized.

View Article and Find Full Text PDF

While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here, we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N terminus of the ebolavirus glycoproteins (GPs) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets.

View Article and Find Full Text PDF

There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor-binding site are coupled to a mAb against a conserved, surface-exposed GP epitope.

View Article and Find Full Text PDF

A detailed understanding of serological immune responses to Ebola and Marburg virus infections will facilitate the development of effective diagnostic methods, therapeutics, and vaccines. We examined antibodies from Ebola or Marburg survivors 1 to 14 years after recovery from disease, by using a microarray that displayed recombinant nucleoprotein (NP), viral protein 40 (VP40), envelope glycoprotein (GP), and inactivated whole virions from six species of filoviruses. All three outbreak cohorts exhibited significant antibody responses to antigens from the original infecting species and a pattern of additional filoviruses that varied by outbreak.

View Article and Find Full Text PDF

Robust humoral and cellular immunity are critical for survival in humans during an ebolavirus infection. However, the interplay between these two arms of immunity is poorly understood. To address this, we examined residual immune responses in survivors of the Sudan virus (SUDV) outbreak in Gulu, Uganda (2000-2001).

View Article and Find Full Text PDF

Polyclonal antibodies, derived from humans or hyperimmunized animals, have been used prophylactically or therapeutically as countermeasures for a variety of infectious diseases. SAB Biotherapeutics has successfully developed a transchromosomic (Tc) bovine platform technology that can produce fully human immunoglobulins rapidly, and in substantial quantities, against a variety of disease targets. In this study, two Tc bovines expressing high levels of fully human IgG were hyperimmunized with a recombinant glycoprotein (GP) vaccine consisting of the 2014 Ebola virus (EBOV) Makona isolate.

View Article and Find Full Text PDF