Activation of the kallikrein-kinin system promotes vascular leakage, inflammation, and neurodegeneration in ischemic stroke. Inhibition of plasma kallikrein (PK) - a key component of the KKS - in the acute phase of ischemic stroke has been reported to reduce thrombosis, inflammation, and damage to the blood-brain barrier. However, the role of PK during the recovery phase after cerebral ischemia is unknown.
View Article and Find Full Text PDFThe role of inflammation and immunity in the pathomechanism of neurodegenerative diseases has become increasingly relevant within the past few years. In this context, the NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in the activation of inflammatory responses by promoting the maturation and secretion of pro-inflammatory cytokines such as interleukin-1β and interleukin-18. We hypothesized that the interplay between nuclear factor erythroid 2-related factor 2 (Nrf2) and NADPH oxidase 4 (NOX4) may play a critical role in the activation of the NLRP3 inflammasome and subsequent inflammatory responses.
View Article and Find Full Text PDFAlzheimer's disease (AD) and other forms of dementia are together a leading cause of disability and death in the aging global population, imposing a high personal, societal, and economic burden. They are also among the most prominent examples of failed drug developments. Indeed, after more than 40 AD trials of anti-amyloid interventions, reduction of amyloid-β (Aβ) has never translated into clinically relevant benefits, and in several cases yielded harm.
View Article and Find Full Text PDFPlatelets are key mediators of thrombus formation and inflammation during the acute phase of ischaemic stroke. Particularly, the platelet glycoprotein (GP) receptors GPIbα and GPVI have been shown to mediate platelet adhesion and activation in the ischaemic brain. GPIbα and GPVI blockade could reduce infarct volumes and improve functional outcome in mouse models of acute ischaemic stroke, without concomitantly increasing intracerebral haemorrhage.
View Article and Find Full Text PDFDifferential gene expression normalised to a single housekeeping (HK) is used to identify disease mechanisms and therapeutic targets. HK gene selection is often arbitrary, potentially introducing systematic error and discordant results. Here we examine these risks in a disease model of brain hypoxia.
View Article and Find Full Text PDFDespite decades of promising preclinical validation and clinical translation, ischemic stroke still remains as one of the leading causes of death and disability worldwide. Within its complex pathophysiological signatures, thrombosis and inflammation, that is, thromboinflammation, are highly interconnected processes leading to cerebral vessel occlusion, inflammatory responses, and severe neuronal damage following the ischemic event. Hence, we here review the most recent updates on thromboinflammatory-dependent mediators relevant after stroke focusing on recent discoveries on platelet modulation, a potential regulation of the innate and adaptive immune system in thromboinflammation, utterly providing a thorough up-to-date overview of all therapeutic approaches currently undergoing clinical trial.
View Article and Find Full Text PDFAggregates of the microtubule-associated protein tau are a common marker of neurodegenerative diseases collectively termed as tauopathies, such as Alzheimer's disease (AD) and frontotemporal dementia. Therapeutic strategies based on tau have failed in late stage clinical trials, suggesting that tauopathy may be the consequence of upstream causal mechanisms. As increasing levels of reactive oxygen species (ROS) may trigger protein aggregation or modulate protein degradation and, we had previously shown that the ROS producing enzyme NADPH oxidase 4 (NOX4) is a major contributor to cellular autotoxicity, this study was designed to evaluate if NOX4 is implicated in tauopathy.
View Article and Find Full Text PDFTrends Pharmacol Sci
February 2022
For complex diseases, most drugs are highly ineffective, and the success rate of drug discovery is in constant decline. While low quality, reproducibility issues, and translational irrelevance of most basic and preclinical research have contributed to this, the current organ-centricity of medicine and the 'one disease-one target-one drug' dogma obstruct innovation in the most profound manner. Systems and network medicine and their therapeutic arm, network pharmacology, revolutionize how we define, diagnose, treat, and, ideally, cure diseases.
View Article and Find Full Text PDFTraditional drug discovery faces a severe efficacy crisis. Repurposing of registered drugs provides an alternative with lower costs and faster drug development timelines. However, the data necessary for the identification of disease modules, i.
View Article and Find Full Text PDFReactive oxygen species (ROS) have been correlated with almost every human disease. Yet clinical exploitation of these hypotheses by pharmacological modulation of ROS has been scarce to nonexistent. Are ROS, thus, irrelevant for disease? No.
View Article and Find Full Text PDFDysfunctional reactive oxygen species (ROS) signaling is considered an important disease mechanism. Therapeutically, non-selective scavenging of ROS by antioxidants, however, has failed in multiple clinical trials to provide patient benefit. Instead, pharmacological modulation of disease-relevant, enzymatic sources of ROS appears to be an alternative, more promising and meanwhile successfully validated approach.
View Article and Find Full Text PDFBackground And Purpose: Ischaemic stroke is a leading cause of death, disability, and a high unmet medical need. Post-reperfusion inflammation and an up-regulation of toll-like receptor 4 (TLR4), an upstream sensor of innate immunity, are associated with poor outcome in stroke patients. Here, we identified the therapeutic effect of targeting the LPS/TLR4 signal transduction pathway.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
Drug discovery faces an efficacy crisis to which ineffective mainly single-target and symptom-based rather than mechanistic approaches have contributed. We here explore a mechanism-based disease definition for network pharmacology. Beginning with a primary causal target, we extend this to a second using guilt-by-association analysis.
View Article and Find Full Text PDFIschemic stroke is a predominant cause of disability worldwide, with thrombolytic or mechanical removal of the occlusion being the only therapeutic option. Reperfusion bears the risk of an acute deleterious calcium-dependent breakdown of the blood-brain barrier. Its mechanism, however, is unknown.
View Article and Find Full Text PDFNetwork medicine utilizes common genetic origins, markers and co-morbidities to uncover mechanistic links between diseases. These links can be summarized in the diseasome, a comprehensive network of disease-disease relationships and clusters. The diseasome has been influential during the past decade, although most of its links are not followed up experimentally.
View Article and Find Full Text PDFIschemic injury represents the most frequent cause of death and disability, and it remains unclear why, of all body organs, the brain is most sensitive to hypoxia. In many tissues, type 4 NADPH oxidase is induced upon ischemia or hypoxia, converting oxygen to reactive oxygen species. Here, we show in mouse models of ischemia in the heart, brain, and hindlimb that only in the brain does NADPH oxidase 4 (NOX4) lead to ischemic damage.
View Article and Find Full Text PDFPromising results have been reported in preclinical stroke target validation for pharmacological principles that disrupt the N-methyl-D-aspartate receptor-post-synaptic density protein-95-neuronal nitric oxide synthase complex. However, post-synaptic density protein-95 is also coupled to potentially neuroprotective mechanisms. As post-synaptic density protein-95 inhibitors may interfere with potentially neuroprotective mechanisms and sufficient validation has often been an issue in translating basic stroke research, we wanted to close that gap by comparing post-synaptic density protein-95 inhibitors with NOS1(-/-) mice and a NOS inhibitor.
View Article and Find Full Text PDFThe data presented in this article supports the rat brain sample preparation procedure previous to its injection into the liquid chromatography-tandem mass spectrometry (LC-MS/MS) system to monitor levels of adrenaline, noradrenaline, glutamic acid, γ-aminobutyric acid, dopamine, 5-hydroxytryptamine, 5-hydroxyindole acetic acid, and 3-methoxy-4-hydroxyphenylglycol. In addition, we describe the method validation assays (such as calibration curve, lower limit of quantification, precision and accuracy intra- and inter-day, selectivity, extraction recovery and matrix effect, stability, and carry-over effect) according to the United States Food and Drug Administration and European Medicine Agency to measure in one step different neurotransmitters and their metabolites. The data supplied in this article is related to the research study entitled: "Simultaneous determination of 8 neurotransmitters and their metabolite levels in rat brain using liquid chromatography in tandem with mass spectrometry: application to the murine Nrf2 model of depression" (Wojnicz et al.
View Article and Find Full Text PDFAnalysis of neurotransmitters and their metabolites is useful for the diagnosis of central nervous system diseases. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with protein precipitation was developed to monitor levels of adrenaline (AD), noradrenaline (NA), glutamic acid (Glu), γ-aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT), 5-hydroxyindole acetic acid (5-HIAA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) in rat brain tissue. Isoprenaline was used as an internal standard (IS).
View Article and Find Full Text PDFAntioxid Redox Signal
November 2015
Significance: Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear.
View Article and Find Full Text PDFSignificance: Oxidative stress is suggested to be a disease mechanism common to a wide range of disorders affecting human health. However, so far, the pharmacotherapeutic exploitation of this, for example, based on chemical scavenging of pro-oxidant molecules, has been unsuccessful.
Recent Advances: An alternative emerging approach is to target the enzymatic sources of disease-relevant oxidative stress.
Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice.
View Article and Find Full Text PDF