Biofilm formation by the pathobiont is associated with human nasopharynx colonization, otitis media in children, and chronic respiratory infections in adults suffering from chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD). β-lactam and quinolone antibiotics are commonly used to treat these infections. However, considering the resistance of biofilm-resident bacteria to antibiotic-mediated killing, the use of antibiotics may be insufficient and require being replaced or complemented with novel strategies.
View Article and Find Full Text PDFThe global threat posed by antimicrobial resistance demands urgent action and the development of effective drugs. Lower respiratory tract infections remain the deadliest communicable disease worldwide, often challenging to treat due to the presence of bacteria that form recalcitrant biofilms. There is consensus that novel anti-infectives with reduced resistance compared with conventional antibiotics are needed, leading to extensive research on innovative antibacterial agents.
View Article and Find Full Text PDFLipid-based nanoparticles (LNPs) are advanced materials (AdMa), particularly relevant for drug delivery of poorly water-soluble compounds, while also providing protection, stabilization, and controlled release of the drugs/active substances. The toxicological data available often focus on the specific applications of the LNPs-drug tested, with indication of low toxicity. However, the ecotoxicological effects of LNPs are currently unknown.
View Article and Find Full Text PDFNanoemulsions (NE) are lipid nanocarriers that can efficiently load hydrophobic active compounds, like palmitoyl-L-carnitine (pC), used here as model molecule. The use of design of experiments (DoE) approach is a useful tool to develop NEs with optimized properties, requiring less experiments compared to trial-and-error approach. In this work, NE were prepared by the solvent injection technique and DoE using a two-level fractional factorial design (FFD) as model was implemented for designing pC-loaded NE.
View Article and Find Full Text PDFPart Fibre Toxicol
July 2022
Background: The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
April 2022
Polymethine dyes (PMD) have proved to be excellent candidates in the biomedical field for potential applications in both diagnostic and therapeutic. However, PMD application in biomedicine is hindered by their poor solubility and stability in physiological conditions. Therefore, the incorporation of these dyes in nanosystems could be important to prevent the formation of dye aggregates in aqueous environment and to protect their photophysical characteristics.
View Article and Find Full Text PDFThis paper aims to characterize halophilic bacteria inhabiting Algerian Saline Ecosystems (Sebkha and Chott) located in arid and semi-arid ecoclimate zones (Northeastern Algeria). In addition, screening of enzymatic activities, heavy metal tolerance and antagonistic potential against phytopathogenic fungi were tested. A total of 74 bacterial isolates were screened and phylogenetically characterized using 16S rRNA gene sequencing.
View Article and Find Full Text PDFNovel alternatives to antibiotics are urgently needed for the successful treatment of antimicrobial resistant (AMR) infections. Experimental antibacterial oligonucleotide therapeutics, such as transcription factor decoys (TFD), are a promising approach to circumvent AMR. However, the therapeutic potential of TFD is contingent upon the development of carriers that afford efficient DNA protection against nucleases and delivery of DNA to the target infection site.
View Article and Find Full Text PDFHypothesis: Transcription factor decoys (TFD) are short oligonucleotides designed to block essential genetic pathways in bacteria and defeat resistant infections. TFD protection in biological fluids and their delivery to the site of infection require formulation in appropriate delivery systems. In this work, we build on a classical phosphatidylcholine/phosphatidylethanolamine (POPC/DOPE) scaffold to design TFD-loaded cationic liposomes by combining the DNA-complexing abilities of a bolaamphiphile, (1,1'-(dodecane-1,12-diyl)-bis-(9-amino-1,2,3,4-tetrahydroacridinium) chloride (12-bis-THA), with the biocompatible cationic lipid ethyl-phosphatidylcholine (DPePC).
View Article and Find Full Text PDFThe objective of this work was to investigate the potential utility of nanocapsules composed of an oily core decorated with a single polyarginine (PARG), or double PARG/polyacrylic acid (PAA) layer as oral peptide delivery carrier. A step-by-step formulation optimization process was designed, which involved the study of the influence of the surfactants, oils and polymer shells (PARG of different molecular weight and PAA) on the nanocapsules physicochemical properties, peptide loading efficiency, stability in simulated intestinal fluids (SIF) and capacity to enhance the permeability of the intestinal epithelium. Despite the lipophilic nature of the nanocapsules, it was possible to achieve a moderate loading of the hydrophilic model peptide salmon calcitonin and control its release in SIF, by adjusting the formulation conditions.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
October 2017
Antibacterial resistance has become a serious crisis for world health over the last few decades, so that new therapeutic approaches are strongly needed to face the threat of resistant infections. Transcription factor decoys (TFD) are a promising new class of antimicrobial oligonucleotides with proven in vivo activity when combined with a bolaamphiphilic cationic molecule, 12-bis-THA. These two molecular species form stable nanoplexes which, however, present very scarce colloidal stability in physiological media, which poses the challenge of drug formulation and delivery.
View Article and Find Full Text PDFWe have previously reported the development of novel nanocapsules made of polyarginine (PArg) specifically designed for the delivery of small anticancer drugs into cells. Our goal, in this work, has been to investigate the potential of these nanocarriers for oral delivery of peptide anticancer drugs. To reach this objective, we chose the antitumoral peptide, elisidepsin, and evaluated the characteristics of the PArg nanocapsules in terms of drug loading capacity, stability in simulated intestinal fluids, and ability to interact with the intestinal epithelium both in vitro (Caco-2 model cell line) and in vivo.
View Article and Find Full Text PDFAn extremely halophilic archaeon, strain S2FP14T, was isolated from a brine sample from the inland hypersaline lake Fuente de Piedra, a saline-wetland wildfowl reserve located in the province of Málaga in southern Spain. Colonies were red-pigmented and the cells were Gram-staining-negative, motile and pleomorphic. S2FP14T was able to grow in media containing 12.
View Article and Find Full Text PDFThe aim of this study was to use archaeosomes, a novel kind of liposomes made up by archaeal polar lipids, both multilamellars (MLVs) and unilamellars (SUVs), as a topical delivery system for natural antioxidant compounds recovered from olive mill waste. For comparative purpose an analogue formulation of phosphatidylcholine liposomes was prepared. SUVs were smaller than MLVs ones, showing size values smaller than 200nm, which was maintained during the stability study.
View Article and Find Full Text PDFA Gram-negative, aerobic, moderately halophilic bacterium, designated Set74(T), was isolated from brine of a salt concentrator at Ain Oulmene, Algeria. The strain grew optimally at 37-40 °C, at pH 6.5-7.
View Article and Find Full Text PDFA comparative study between archaeosomes, lipid lamellar vesicles made from archaea polar lipids, and conventional phospholipids liposomes was carried out, aiming at evaluating the properties and the potential of archaeosomes as novel colloidal carriers for effective drug delivery to the skin. Betamethasone dipropionate (BMD)-loaded archaeosomes and conventional liposomes were prepared by the thin-lipid film and sonication procedures, using, respectively, archaeal lipids extracted from archaea Halobacterium salinarum and enriched soy phosphatidylcholine. Vesicular formulations were characterized by assessing vesicle size, zeta potential, incorporation efficiency, and morphology.
View Article and Find Full Text PDFA Gram-negative, non-spore-forming, motile, moderately halophilic, aerobic, rod-shaped bacterium, designated strain FP2.5(T), was isolated from the inland hypersaline lake Fuente de Piedra, a saline-wetland wildfowl reserve located in the province of Málaga in southern Spain. Strain FP2.
View Article and Find Full Text PDF