Ecklonia radiata is the main foundation species in Australian temperate reefs, yet little has been published on its reproduction and how this may change across its depth range (1-50+ m). In this study, we examined differences in sporophyte morphology and zoospore production during a reproductive season and across four depths (7, 15, 25, and 40 m). Additionally, we examined differences in germination rate, survival, and morphological traits of gametophytes obtained from these four depths, cultured under the same light and temperature conditions.
View Article and Find Full Text PDFMarine heatwaves (MHWs) have been documented around the world, causing widespread mortality of numerous benthic species on shallow reefs (less than 15 m depth). Deeper habitats are hypothesized to be a potential refuge from environmental extremes, though we have little understanding of the response of deeper benthic communities to MHWs. Here, we show how increasing depth moderates the response of seaweed- and coral-dominated benthic communities to an extreme MHW across a subtropical-temperate biogeographical transition zone.
View Article and Find Full Text PDFAcross the globe, remote image data is rapidly being collected for the assessment of benthic communities from shallow to extremely deep waters on continental slopes to the abyssal seas. Exploiting this data is presently limited by the time it takes for experts to identify organisms found in these images. With this limitation in mind, a large effort has been made globally to introduce automation and machine learning algorithms to accelerate both classification and assessment of marine benthic biota.
View Article and Find Full Text PDFSeagrasses of the Great Barrier Reef predominantly occur in coastal regions where terrestrial inputs modify water quality and photosynthetic light is highly variable. Responses to shading were tested for Cymodocea serrulata, Halodule uninervis, Thalassia hemprichii and Zostera muelleri. In aquaria, four light treatments - high (66% surface light), moderate (31%), low (14%) and very low light (1%) treatments - were applied for 102d.
View Article and Find Full Text PDF