Publications by authors named "Ana Gabriela Pina-Medina"

It is well known that peripheral sex steroid hormones cross the blood-brain barrier and control a broad spectrum of reproductive behaviors. However, their role in other essential brain functions was investigated since the 1980s, when the accumulation of pregnenolone and dehydroepiandrosterone in the brain of mammalian species was determined. Since then, numerous studies have demonstrated the participation of sex hormones in brain plasticity processes.

View Article and Find Full Text PDF

Glioblastomas (GBM) are the most frequent and aggressive primary tumor of the central nervous system. In recent years, it has been proposed that sex hormones such as progesterone play an essential role in GBM biology. Membrane progesterone receptors (mPRs) are a group of G protein-coupled receptors with a wide distribution and multiple functions in the organism.

View Article and Find Full Text PDF

Background: Ovarian steroid hormones are involved in modulating the growth of glioblastomas (the most common, aggressive, and lethal brain tumor) through the interaction with their intracellular receptors. Activation of sex hormone receptors is involved in glioblastomas progression. Tibolone (TIB) is a selective tissue estrogenic activity regulator widely prescribed to treat menopausal symptoms and to prevent bone lost.

View Article and Find Full Text PDF

Aims: In women, uterine alterations have been associated with sex steroid hormones. Sex hormones regulate the expression of thyroid hormone receptors (TRs) in the uterus, but an inverse link is unknown. We analyzed the impact of hypothyroidism on histological characteristics, vascular endothelial growth factor (VEGF-A), progesterone receptors (PR), estrogen receptors (ER), thyroid hormone receptors (TRs), perilipin (PLIN-A), and lipid content in the uterus of virgin rabbits.

View Article and Find Full Text PDF

Glioblastomas (GBM) are the most frequent and aggressive human brain tumors due to their high capacity to migrate and invade normal brain tissue. Epidemiological data report that GBM occur in a greater proportion in men than in women (3:2), suggesting the participation of sex hormones in the development of these tumors. It has been reported an increase in testosterone (T) levels in patients with GBM.

View Article and Find Full Text PDF

Astrocytomas are the most common and aggressive primary brain tumors in humans. Invasiveness of these tumors has been attributed in part to deregulation of cell motility-dependent cytoskeletal dynamics that involves actin-binding proteins such as cofilin. Progesterone (P4) has been found to induce migration and invasion of cells derived from breast cancer and endothelium.

View Article and Find Full Text PDF

In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells.

View Article and Find Full Text PDF

The CCAAT/enhancer-binding protein beta (C/EBPβ) is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP) with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described.

View Article and Find Full Text PDF

Pregnancy involves diverse changes in brain function that implicate a re-organization in neuronal cytoskeleton. In this physiological state, the brain is in contact with several hormones that it has never been exposed, as well as with very high levels of hormones that the brain has been in touch throughout life. Among the latter hormones are progesterone and estradiol which regulate several brain functions, including learning, memory, neuroprotection, and the display of sexual and maternal behavior.

View Article and Find Full Text PDF

Pregnancy involves changes in brain function that implicate a re-organization in neuronal cytoskeleton. We analyzed the content of the microtubule associated protein Tau (65kDa isoform) and its phosphorylated form (PhosphoTau) in several rat brain regions throughout pregnancy and on day 2 of lactation by Western blot. In hypothalamus the content of Tau increased on days 2 and 18 of gestation compared with days 14, 21 and in lactation.

View Article and Find Full Text PDF

Aims: We analyzed the effects of the short- and long-term administration of estradiol (E2) or progesterone (P4) after ovariectomy on the expression of MAP2, Tau and GFAP in prefrontal cortex and hippocampus.

Main Methods: Sprague Dawley rats were ovariectomized and immediately treated with E2 or P4 for 2 or 18 weeks. At the end of treatments, hippocampus and prefrontal cortex were excised, proteins were extracted and MAP2, Tau and GFAP were analyzed by Western blot.

View Article and Find Full Text PDF