Type 2 diabetes mellitus (T2DM) is one of the most common metabolic diseases in the world and poses a significant public health challenge. Early detection and management of this metabolic disorder is crucial to prevent complications and improve outcomes. This paper aims to find core differences in male and female markers to detect T2DM by their clinic and anthropometric features, seeking out ranges in potential biomarkers identified to provide useful information as a pre-diagnostic tool whie excluding glucose-related biomarkers using machine learning (ML) models.
View Article and Find Full Text PDFAccording to the World Health Organization (WHO), type 2 diabetes mellitus (T2DM) is a result of the inefficient use of insulin by the body. More than 95% of people with diabetes have T2DM, which is largely due to excess weight and physical inactivity. This study proposes an intelligent feature selection of metabolites related to different stages of diabetes, with the use of genetic algorithms (GA) and the implementation of support vector machines (SVMs), K-Nearest Neighbors (KNNs) and Nearest Centroid (NEARCENT) and with a dataset obtained from the Instituto Mexicano del Seguro Social with the protocol name of the following: "Análisis metabolómico y transcriptómico diferencial en orina y suero de pacientes pre diabéticos, diabéticos y con nefropatía diabética para identificar potenciales biomarcadores pronósticos de daño renal" (differential metabolomic and transcriptomic analyses in the urine and serum of pre-diabetic, diabetic and diabetic nephropathy patients to identify potential prognostic biomarkers of kidney damage).
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disease that mainly affects older adults. Currently, AD is associated with certain hypometabolic biomarkers, beta-amyloid peptides, hyperphosphorylated tau protein, and changes in brain morphology. Accurate diagnosis of AD, as well as mild cognitive impairment (MCI) (prodromal stage of AD), is essential for early care of the disease.
View Article and Find Full Text PDF