Publications by authors named "Ana Flavia Nogueira"

One of the challenges hindering the commercialization of perovskite solar cells (PSCs) is the presence of toxic metals such as lead in their composition. Simulation studies using SCAPS-1D have already been conducted on lead-free PSCs to find optimized solar cell parameters, having tin as the primary candidate for replacing lead in perovskites. Here, we used fullerene-C and its derivative PCBM as interlayers in a lead-free tin-based PSC between the ETL (ZnO) and the perovskite MASI in both regular and inverted configurations of PSCs using SCAPS-1D software.

View Article and Find Full Text PDF

The performance and stability of metal halide perovskite solar cells strongly depend on precursor materials and deposition methods adopted during the perovskite layer preparation. There are often a number of different formation pathways available when preparing perovskite films. Since the precise pathway and intermediary mechanisms affect the resulting properties of the cells, studies have been conducted to unravel the mechanisms involved in the formation and evolution of perovskite phases.

View Article and Find Full Text PDF

Perovskites are in the hotspot of material science and technology. Outstanding properties have been discovered, fundamental mechanisms of defect formation and degradation elucidated, and applications in a wide variety of optoelectronic devices demonstrated. Advances through adjusting the bulk-perovskite composition, as well as the integration of layered and nanostructured perovskites in the devices, allowed improvement in performance and stability.

View Article and Find Full Text PDF
Article Synopsis
  • - The study finds that using an organic molecule with two anilinium cations enhances the efficiency and stability of perovskite solar cells when applied as a passivation layer.
  • - Comparing this molecule to its neutral form reveals that the alteration in electron density due to protonation and the presence of a halide anion contributes to improved passivation.
  • - The research also highlights the important role of the counteranion in influencing the solar cell's overall performance.
View Article and Find Full Text PDF

In celebration of the excellence and breadth of Latin American research achievements across the chemical sciences, we are delighted to present an introduction to the themed collection, Celebrating Latin American talent in chemistry.

View Article and Find Full Text PDF

CsAgBiBr is a potential lead-free double perovskite candidate for optoelectronic applications; however, its large and indirect band gap imposes limitations. Here, single crystals of CsAgBiBr are doped with Cu cations to increase the absorption range from the visible region up to 0.5 eV in the near-infrared region.

View Article and Find Full Text PDF

Engineering 2D/3D perovskite interfaces is a common route to realizing efficient and stable perovskite solar cells. Whereas 2D perovskite's main function in trap passivation has been identified and is confirmed here, little is known about its 2D/3D interface properties under thermal stress, despite being one of the main factors that induces device instability. In this work, we monitor the response of two typical 2D/3D interfaces under a thermal cycle by X-ray scattering.

View Article and Find Full Text PDF

CsPbX perovskite nanoplates (PNPLs) were formed in a synthesis driven by SnX (X=Cl, Br, I) salts. The role played by these hard Lewis acids in directing PNPL formation is addressed. Sn disturbs the acid-base equilibrium of the system, increasing the protonation rate of oleylamine and inducing anisotropic growth of nanocrystals.

View Article and Find Full Text PDF

Dye-sensitized solar cells (DSSCs) have been intensely researched for more than two decades. Electrolyte formulations are one of the bottlenecks to their successful commercialization, since these result in trade-offs between the photovoltaic performance and long-term performance stability. The corrosive nature of the redox shuttles in the electrolytes is an additional limitation for industrial-scale production of DSSCs, especially with low cost metallic electrodes.

View Article and Find Full Text PDF

In the last two decades, many experiments were conducted in self-organization of nanocrystals into two- and three-dimensional (3D) superlattices and the superlattices were synthesized and characterized by different techniques, revealing their unusual properties. Among all characterization techniques, X-ray diffraction (XRD) is the one that has allowed the confirmation of the 3D superlattice formation due to the presence of sharp and intense diffraction peaks. In this work, we study self-organized superlattices of quantum dots of PbS prepared by dropping a monodispersed colloidal solution on a glass substrate at different temperatures.

View Article and Find Full Text PDF

Nanocrystalline TiO2 and reduced graphene oxide (TiO2/RGO) composite films were prepared by combining a sol-gel method with hydrothermal treatment, employing titanium isopropoxide (Ti(O(i)Pr)4) and graphene oxide (GO) as starting materials. Although several reports in the literature have explored the benefits of RGO addition in titania films for photocatalysis and water splitting reactions, the role of RGO in the composite is always described as that of a material that is able to act as an electron acceptor and transport electrons more efficiently. However, in most of these reports, no clear evidence for this "role" is presented, and the main focus is deviated to the improved efficiency and not to the reasons for said efficiency.

View Article and Find Full Text PDF

Well-aligned ZnO nanorod films were grown onto transparent conducting substrates by using an aqueous solution route. The presence of some reflections in the X-ray diffraction pattern of the ZnO films indicates the vertical alignment of the nanorods along the c axis of the wurtzite hexagonal structure. Well-aligned ZnO nanorods were observed by scanning electron microscopy.

View Article and Find Full Text PDF

In order to improve the dispersion of single-wall carbon nanotubes in a matrix of poly(3-hexylthiophene), this paper reports the modification of single-wall carbon nanotubes with COOH groups followed by reaction with cysteamine that introduced thiol groups along the tubes. The resulting modified single-wall carbon nanotubes were characterized by high resolution transmission electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Raman spectroscopy. The modified carbon nanotubes were applied, in combination with poly(3-hexylthiophene), in a bulk heterojunction solar cell.

View Article and Find Full Text PDF

Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa2O4), even in the samples containing 5 atom% of gallium, was detected by XRD.

View Article and Find Full Text PDF

The influence of the addition of 12-crown-4 ether in a gel polymer electrolyte based to a PEO copolymer and its application in dye sensitized solar cells were investigated. Introduction of these Li+ trapping species brought beneficial contributions to both V(oc) and J(sc) values, increasing the device's performance.

View Article and Find Full Text PDF

The influence of the preparation method on the structure, conduction and photoelectrochemical properties of monomeric and polymeric tetraruthenated porphyrin films on ITO glass and nanocrystalline TiO2 has been investigated. The films were characterized by STM, MAC mode SFM, cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and combined electro-/photoelectrochemical techniques. The electronic diffusion coefficient D(e)C(m)2 of the films differed by three to four orders of magnitude depending on the procedure employed for the deposition process.

View Article and Find Full Text PDF