Glioblastoma (GBM) is the most aggressive form of primary brain tumor. Complete surgical resection of GBM is almost impossible due to the infiltrative nature of the cancer. While no evidence for recent selection events have been found after diagnosis, the selective forces that govern gliomagenesis are strong, shaping the tumor's cell composition during the initial progression to malignancy with late consequences for invasiveness and therapy response.
View Article and Find Full Text PDFObjectives: Patient global assessment (PGA) is purported to add the patient's perspective in the composite measures of RA. However, PGA is not standardized and it is not known whether patients' interpretation of the measure is consistent with its intended purpose. This study aimed to explore difficulties experienced by patients with RA in completing PGA, and to assess the impact of a structured explanation in improving its validity and reliability.
View Article and Find Full Text PDFPseudomonas are a common cause of hospital-acquired infections that may be lethal. ADP-ribosyltransferase activities of Pseudomonas exotoxin-S and -T depend on 14-3-3 proteins inside the host cell. By binding in the 14-3-3 phosphopeptide binding groove, an amphipathic C-terminal helix of ExoS and ExoT has been thought to be crucial for their activation.
View Article and Find Full Text PDFSuperoxide reductases (SORs) are enzymes that detoxify the superoxide anion through its reduction to hydrogen peroxide and exist in both prokaryotes and eukaryotes. The substrate is transformed at an iron catalytic center, pentacoordinated in the ferrous state by four histidines and one cysteine. SORs have a highly conserved motif, (E)(K)HxP-, in which the glutamate is associated with a redox-driven structural change, completing the octahedral coordination of the iron in the ferric state, whereas the lysine may be responsible for stabilization and donation of a proton to catalytic intermediates.
View Article and Find Full Text PDFDuring infection, the Gram-negative opportunistic pathogen Pseudomonas aeruginosa employs its type III secretion system to translocate the toxin exoenzyme S (ExoS) into the eukaryotic host cell cytoplasm. ExoS is an essential in vivo virulence factor that enables P. aeruginosa to avoid phagocytosis and eventually kill the host cell.
View Article and Find Full Text PDFSelective inhibitors could help unveil the mechanisms by which inhibition of poly(ADP-ribose) polymerases (PARPs) elicits clinical benefits in cancer therapy. We profiled 10 clinical PARP inhibitors and commonly used research tools for their inhibition of multiple PARP enzymes. We also determined crystal structures of these compounds bound to PARP1 or PARP2.
View Article and Find Full Text PDFThe gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen associated with drug resistance complications and, as such, an important object for drug discovery efforts. One attractive target for development of therapeutics is the ADP-ribosyltransferase Exotoxin-S (ExoS), an early effector of the type III secretion system that is delivered into host cells to affect their transcription pattern and cytoskeletal dynamics. The purpose of this study was to formulate a real-time assay of purified recombinant ExoS activity for high-throughput application.
View Article and Find Full Text PDFSuperoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network.
View Article and Find Full Text PDFCurr Top Microbiol Immunol
March 2015
The existence and significance of endogenous cytosolic and nuclear mono-ADP-ribosylation has been a matter of debate. Today, evidence suggests that the human enzymes that catalyze the reaction have been rounded up. Moreover, substrate proteins and specific functions for mono-ADP-ribosyltransferases are beginning to be defined.
View Article and Find Full Text PDFInhibiting ADP-ribosyl transferases with PARP-inhibitors is considered a promising strategy for the treatment of many cancers and ischemia, but most of the cellular targets are poorly characterized. Here, we describe an inhibitor of ADP-ribosyltransferase-3/poly(ADP-ribose) polymerase-3 (ARTD3), a regulator of DNA repair and mitotic progression. In vitro profiling against 12 members of the enzyme family suggests selectivity for ARTD3, and crystal structures illustrate the molecular basis for inhibitor selectivity.
View Article and Find Full Text PDFDesulforubrerythrin from Campylobacter jejuni has recently been biochemical and spectroscopically characterized. It is a member of the rubrerythrin family, and it is composed of three structural domains: the N-terminal desulforedoxin domain with a non-heme iron center, followed by a four-helix bundle domain harboring a binuclear iron center and finally a C-terminal rubredoxin domain. To date, this is the first example of a protein presenting this kind of structural domain organization, and therefore the determination of its crystal structure may unveil unexpected structural features.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
May 2011
Superoxide reductases (SORs) are the most recent oxygen-detoxification system to be identified in anaerobic and microaerobic bacteria and archaea. SORs are metalloproteins that are characterized by their possession of a catalytic nonhaem iron centre in the ferrous form coordinated by four histidine ligands and one cysteine ligand. Ignicoccus hospitalis, a hyperthermophilic crenarchaeon, is the only organism known to date to serve as a host for Nanoarchaeum equitans, a nanosized hyperthermophilic archaeon isolated from a submarine hot vent which completely depends on the presence of and contact with I.
View Article and Find Full Text PDFA novel multidomain metalloprotein from Campylobacter jejuni was overexpressed in Escherichia coli, purified, and extensively characterized. This protein is isolated as a homotetramer of 24-kDa monomers. According to the amino acid sequence, each monomer was predicted to contain three structural domains: an N-terminal desulforedoxin-like domain, followed by a four-helix bundle domain harboring a non-sulfur μ-oxo diiron center, and a rubredoxin-like domain at the C-terminus.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
May 2010
Superoxide reductases (SORs) are metalloproteins which constitute the most recently identified oxygen-detoxification system in anaerobic and microaerobic bacteria and archaea. SORs are involved in scavenging superoxide radicals from the cell by catalyzing the reduction of superoxide ({\rm O}_{2};{\bullet -}) to hydrogen peroxide and are characterized by a catalytic nonhaem iron centre coordinated by four histidine ligands and one cysteine ligand. Ignicoccus hospitalis, a hyperthermophilic crenarchaeon, is known to have a neelaredoxin-type SOR that keeps toxic oxygen species levels under control.
View Article and Find Full Text PDFBiochim Biophys Acta
February 2010
Superoxide anion is among the deleterious reactive oxygen species, towards which all organisms have specialized detoxifying enzymes. For quite a long time, superoxide elimination was thought to occur through its dismutation, catalyzed by Fe, Cu, and Mn or, as more recently discovered, by Ni-containing enzymes. However, during the last decade, a novel type of enzyme was established that eliminates superoxide through its reduction: the superoxide reductases, which are spread among anaerobic and facultative microorganisms, from the three life kingdoms.
View Article and Find Full Text PDFThe resonance Raman (RR) spectra of the oxidized wild-type Archaeoglobus fuglidus 1Fe-Superoxide reductase (SOR), E12V and E12Q mutants were studied at different pH conditions upon excitation in resonance with the pH-dependent charge transfer transition to the ferric iron. The wild-type SOR from Nanoarchaeum equitans that lacks the highly conserved glutamate residue was investigated as a 'natural variant'. No substantial differences were observed in the RR spectra of the active sites of the A.
View Article and Find Full Text PDF