Bulk methods to fractionate organelles lack the resolution to capture single-cell heterogeneity. While microfluidic approaches attempt to fractionate organelles at the cellular level, they fail to map each organelle back to its cell of origin-crucial for multiomics applications. To address this, we developed VacTrap, a high-throughput microfluidic device for isolating and spatially indexing single nuclei from mammalian cells.
View Article and Find Full Text PDFGaining insight into the timing of cell apoptosis events requires single-cell-resolution measurements of cell viability. We explore the supposition that mechanism-based scrutiny of programmed cell death would benefit from same-cell analysis of both the DNA state (intact vs fragmented) and the protein states, specifically the full-length vs cleaved state of the DNA-repair protein PARP1, which is cleaved by caspase-3 during caspase-dependent apoptosis. To make this same-cell, multimode measurement, we introduce the single-cell electrophoresis-based viability and protein (SEVAP) assay.
View Article and Find Full Text PDFProtein isoforms play a key role in disease progression and arise from mechanisms involving multiple molecular subtypes, including DNA, mRNA and protein. Recently introduced multimodal assays successfully link genomes and transcriptomes to protein expression landscapes. However, the specificity of the protein measurement relies on antibodies alone, leading to major challenges when measuring different isoforms of the same protein.
View Article and Find Full Text PDF