Mild cognitive impairment (MCI) affects nearly 20% of older adults worldwide, with no targetable interventions for prevention. COVID-19 adversely affects cognition, with >70% of older adults with Long COVID presenting with cognitive complaints. Neurovascular coupling (NVC), an essential mechanism of cognitive function, declines with aging and is further attenuated in neurocognitive disorders.
View Article and Find Full Text PDFPolyphenols, plant-derived secondary metabolites, play crucial roles in plant stress responses, growth regulation, and environmental interactions. In humans, polyphenols are associated with various health benefits, particularly in cardiometabolic health. Despite growing evidence of polyphenols' health-promoting effects, their mechanisms remain poorly understood due to high interindividual variability in bioavailability and metabolism.
View Article and Find Full Text PDFAge-related cerebromicrovascular endothelial dysfunction underlies the initiation and progression of cognitive dysfunction and dementia, thus increasing the susceptibility of older adults to such conditions. Normal brain function requires dynamic adjustment of cerebral blood flow to meet the energetic demands of active neurons, which is achieved the homeostatic mechanism neurovascular coupling (NVC). In this context, therapeutical strategies aimed at rescuing or preserving NVC responses can delay the incidence or mitigate the severity of age-related cognitive dysfunction, and time-restricted eating (TRE) is a potential candidate for such a strategy.
View Article and Find Full Text PDFDysregulated energy metabolism is a hallmark of aging, including brain aging; thus, strategies to restore normal metabolic regulation are at the forefront of aging research. Intermittent fasting, particularly time-restricted eating (TRE), is one of these strategies. Despite its well-established effectiveness in improving metabolic outcomes in older adults, the effect of TRE on preserving or improving cerebrovascular health during aging remains underexplored.
View Article and Find Full Text PDFIntroduction: Mild cognitive impairment (MCI) is a prodromal stage of dementia. Understanding the mechanistic changes from healthy aging to MCI is critical for comprehending disease progression and enabling preventative intervention.
Methods: Patients with MCI and age-matched controls (CN) were administered cognitive tasks during functional near-infrared spectroscopy (fNIRS) recording, and changes in plasma levels of extracellular vesicles (EVs) were assessed using small-particle flow cytometry.
This review investigates the multifaceted role of the p66Shc adaptor protein and the gut microbiota in regulating mitochondrial function and oxidative stress, and their collective impact on the pathogenesis of chronic diseases. The study delves into the molecular mechanisms by which p66Shc influences cellular stress responses through Rac1 activation, Forkhead-type transcription factors inactivation, and mitochondria-mediated apoptosis, alongside modulatory effects of gut microbiota-derived metabolites and endotoxins. Employing an integrative approach, the review synthesizes findings from a broad array of studies, including molecular biology techniques and analyses of microbial metabolites' impacts on host cellular pathways.
View Article and Find Full Text PDFComponents that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g.
View Article and Find Full Text PDFUnder specific conditions, such as catabolic stress or systemic inflammation, endogenous nutrient production becomes insufficient and exogenous supplementation (for example, through dietary intake) is required. Herein, we propose consideration of a dietary nitrate from plant foods as a conditionally essential nutrient for cardiovascular health based on its role in nitric oxide homeostasis. Nitrate derived from plant foods may function as a conditionally essential nutrient, whereas nitrate obtained from other dietary sources, such as drinking water and cured/processed meats, warrants separate consideration because of the associated health risks.
View Article and Find Full Text PDFPeanut skin is a rich source of bioactive compounds which may be able to reduce the risk factors associated with metabolic syndromes. This study aimed to characterize bio-compounds from peanut skin () and their bioactivity (antioxidant activity, inhibition of lipase, and carbohydrase enzymes) and to evaluate their anti-proliferative properties in colorectal cancer cells (HCT116) upon in vitro digestion. Peanut skin was digested in two sequential phases, and the final content, named phase-1 (P1) and phase-2 (P2) extracts, was evaluated.
View Article and Find Full Text PDFSince the outbreak of COVID-19 disease, medical and scientific communities are facing a challenge to contain its spread, develop effective treatments, and reduce its sequelae. Together with the therapeutical treatments, the use of dietary bioactive compounds represents a promising and cost-effective strategy to modulate immunological responses. Amazonian oilseeds are great sources of bioactive compounds, thus representing not only a dietary source of nutrients but also of substances with great interest for human health.
View Article and Find Full Text PDFThe Valparaiso region in Chile was decreed a zone affected by catastrophe in 2019 as a consequence of one of the driest seasons of the last 50 years. In this study, three varieties ('Alfa-INIA', 'California-INIA', and one landrace, 'Local Navidad') of kabuli-type chickpea seeds produced in 2018 (control) and 2019 (climate-related catastrophe, hereafter named water stress) were evaluated for their grain yield. Furthermore, the flavonoid profile of both free and esterified phenolic extracts was determined using liquid chromatography-mass spectrometry, and the concentration of the main flavonoid, biochanin A, was determined using liquid chromatography with diode array detection.
View Article and Find Full Text PDFGuarana (Paullinia cupana) is a plant from the Amazon region with cultural importance. Despite its early ancestral use by indigenous tribes, the first reports regarding the benefits of guarana consumption for human health were published in the 19th century. Since then, the use of guarana seed in powder and extract forms has been studied for its diverse effects on human health, such as stimulating, anti-inflammatory, antioxidant, anticancer, hypocholesterolemic, and anti-obesity effects.
View Article and Find Full Text PDF