Publications by authors named "Ana Clara Carrera"

Osteosarcoma represents a rare cause of cancer in the general population, accounting for <1% of malignant neoplasms globally. Nonetheless, it represents the main cause of malignant bone neoplasm in children, adolescents and young adults under 20 years of age. It also presents another peak of incidence in people over 50 years of age and is associated with rheumatic diseases.

View Article and Find Full Text PDF

The gene expression program induced by NRF2 transcription factor plays a critical role in cell defense responses against a broad variety of cellular stresses, most importantly oxidative stress. NRF2 stability is fine-tuned regulated by KEAP1, which drives its degradation in the absence of oxidative stress. In the context of cancer, NRF2 cytoprotective functions were initially linked to anti-oncogenic properties.

View Article and Find Full Text PDF

Dysregulation of the PI3K/PTEN pathway is a frequent event in cancer, and PIK3CA and PTEN are the most commonly mutated genes after TP53. PIK3R1 is the predominant regulatory isoform of PI3K. PIK3R2 is an ubiquitous isoform that has been so far overlooked, but data from The Cancer Genome Atlas shows that increased expression of PIK3R2 is also frequent in cancer.

View Article and Find Full Text PDF

Oncogenic mutations in the PI3K/AKT pathway are present in nearly half of human tumors. Nonetheless, inhibitory compounds of the pathway often induce pathway rebound and tumor resistance. We find that lung squamous cell carcinoma (SQCC), which accounts for ~20% of lung cancer, exhibits increased expression of the PI3K subunit PIK3R2, which is at low expression levels in normal tissues.

View Article and Find Full Text PDF

Global mechanisms defining the gene expression programs specific for hematopoiesis are still not fully understood. Here, we show that promoter DNA demethylation is associated with the activation of hematopoietic-specific genes. Using genome-wide promoter methylation arrays, we identified 694 hematopoietic-specific genes repressed by promoter DNA methylation in human embryonic stem cells and whose loss of methylation in hematopoietic can be associated with gene expression.

View Article and Find Full Text PDF