Publications by authors named "Ana Civantos"

Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 10 cm to augment the bioactivity and corrosion resistance of porous Mg scaffolds, maintaining their overall material integrity. DPNS creates nanostructures that increase surface area, promote apatite nucleation, and enhance osseointegration, improving the bioactivity and corrosion resistance of porous Mg scaffolds without compromising their structure.

View Article and Find Full Text PDF

In spite of the biocompatible, nontoxic, and radiolucent properties of polyetheretherketone (PEEK), its biologically inert surface compromises its use in dental, orthopedic, and spine fusion industries. Many efforts have been made to improve the biological performance of PEEK implants, from bioactive coatings to composites using titanium alloys or hydroxyapatite and changing the surface properties by chemical and physical methods. Directed plasma nanosynthesis (DPNS) is an atomic-scale nanomanufacturing technique that changes the surface topography and chemistry of solids via low-energy ion bombardment.

View Article and Find Full Text PDF

To address implant-related infections, antibacterial solutions specific to biomaterials are required to prevent bacterial proliferation. Traditional antibiotic usage has been found insufficient, motivating researchers to investigate alternative strategies such as surface modification and the application of antifouling or infection-resistant properties. A developing interest lies in designing surfaces that mimic natural antibacterial nanotopographies.

View Article and Find Full Text PDF

Stress shielding and osseointegration are two main challenges in bone regeneration, which have been targeted successfully by chemical and physical surface modification methods. Direct irradiation synthesis (DIS) is an energetic ion irradiation method that generates self-organized nanopatterns conformal to the surface of materials with complex geometries (e.g.

View Article and Find Full Text PDF

Advances in tissue engineering require the development of new biomaterials with adequate properties of cell attachment and growth. The properties of biomaterials can be improved by incorporation of bioactive molecules to enhance in vitro and/or in vivo functions. In this work, we study the role of a wheat germin-like protease inhibitor (GLPI), free or immobilized in biocompatible matrices to improve cell-attachment ability on different mammalian cell lines.

View Article and Find Full Text PDF

Introduction: Rotator cuff disorders present a high retear rate despite advances in surgical treatment. Tissue engineering could therefore be interesting in order to try to enhance a more biological repair. RhBMP-2 is one of the most osteogenic growth factors and it also induces the formation of collagen type I.

View Article and Find Full Text PDF

Non-viral vectors are a safety tool for gene therapy to deliver therapeutic genes. Among the different non-viral vectors, polyvinylpyrrolidone (PVP), a well-known hydrosoluble, neutral, and non-toxic polymer, satisfies the requirements and becomes a suitable candidate for gene delivery. In this study, we describe the preparation of polyvinylpyrrolidones decorated with pyrrolidine, piperidine, and piperazine groups, and evaluate them in vitro as non-viral gene carriers.

View Article and Find Full Text PDF

Surface-associated bacterial communities, known as biofilms, are responsible for a broad spectrum of infections in humans. Recent studies have indicated that surfaces containing nanoscale protrusions, like those in dragonfly wings, create a hostile niche for bacterial colonization and biofilm growth. This functionality has been mimicked on metals and semiconductors by creating nanopillars and other high aspect ratio nanostructures at the interface of these materials.

View Article and Find Full Text PDF

Bacterial adhesion and biofilm formation on the surface of biomedical devices are detrimental processes that compromise patient safety and material functionality. Several physicochemical factors are involved in biofilm growth, including the surface properties. Among these, material stiffness has recently been suggested to influence microbial adhesion and biofilm growth in a variety of polymers and hydrogels.

View Article and Find Full Text PDF

A new generation of biomaterials are evolving from being biologically inert toward bioactive surfaces, which can further interact with biological components at the nanoscale. Here, we present directed irradiation synthesis (DIS) as a novel technology to selectively apply plasma ions to bombard any type of biomaterial and tailor the nanofeatures needed for growth stimulation. In this work, we demonstrate for the first time, the influence of physiochemical cues (e.

View Article and Find Full Text PDF

Carbon dots (CDs) have recently garnered significant attention owing to their excellent luminescence properties, thereby demonstrating a variety of applications in in vitro and in vivo imaging. Understanding the long-term metabolic fate of these agents in a biological environment is the focus of this work. Here we show that the CDs undergo peroxide catalysed degradation in the presence of lipase.

View Article and Find Full Text PDF

Despite the well-known advantages of the titanium-based implant systems, they still lack an optimal balance between biofunctionality and mechanical strength, especially regarding the modulation of cellular response and a desired implant osseointegration. In this work, we fabricated a nanocomposite based on porous commercially pure grade 4 titanium (c.p.

View Article and Find Full Text PDF

Calcium phosphate chitosan-based composites have gained much interest in recent years for biomedical purposes. In this paper, three-dimensional calcium phosphate chitosan-based composites with different mineral contents were produced using a green method called ice segregation induced self-assembly (ISISA). In this methodology, ice crystals were used as a template to produce porous structures from an aqueous solution of chitosan (CS) and hydroxyapatite (Hap) also containing acetic acid (pH = 4.

View Article and Find Full Text PDF

Titanium (Ti) is broadly used for clinical purposes in various medical fields related to bone repair because of its favorable mechanical properties and its ability to osseointegrate in host bone tissue. Nowadays, Ti surfaces can be functionalized in order to provide potentially beneficial additional properties. In this review, we summarize different surface modifications of Ti implants, focusing on biological relevance and the biological issues targeted by each specific approach.

View Article and Find Full Text PDF

Physical hydrogels have been designed for a double purpose: as growth factor delivery systems and as scaffolds to support cell colonization and formation of new bone. Specifically, the polysaccharide gellan gum and the ubiquitous endogenous molecules chondroitin, albumin and spermidine have been used as exclusive components of these hydrogels. The mild ionotropic gelation technique was used to preserve the bioactivity of the selected growth factor, rhBMP-2.

View Article and Find Full Text PDF

In vitro studies offer the insights for the understanding of the mechanisms at the tissue-implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60V on zirconium implants on the first steps of the osseointegration process.

View Article and Find Full Text PDF

Three types of chitosan-based films have been prepared and evaluated: a non-modified chitosan film bearing cationizable aliphatic amines and two films made of N-sulfopropyl chitosan derivatives bearing both aliphatic amines and negative sulfonate groups at different ratios. Cell adhesion and proliferation on chitosan films of C2C12 pre-myoblastic cells and B16 cells as tumoral model have been tested. A differential cell behavior has been observed on chitosan films due to their different surface modification.

View Article and Find Full Text PDF

Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. Solid free form (SFF) fabrication methods allow fabrication of ceramic scaffolds with fully controlled pore architecture, which opens new perspectives in bone tissue regeneration materials. However, little experimentation has been performed about real biological properties and possible applications of SFF designed 3D ceramic scaffolds.

View Article and Find Full Text PDF

A variety of biomaterials have been introduced as potential substrates for cartilage repair. One such candidate is chitosan, which shares some characteristics with glycosaminoglycan and hyaluronic acid present in articular cartilage. Depending on chitosan source and preparation procedure, variations into its properties can be attained.

View Article and Find Full Text PDF
Article Synopsis
  • * The material was thoroughly tested for biocompatibility and its effect on cell behavior, revealing a strong transcriptional response indicating effective cellular differentiation into bone-forming cells (osteoblasts).
  • * In animal tests, the chitosan/rhBMP-2 coated titanium implants led to new bone formation and blood vessel development, while control implants showed no such response, demonstrating the film's potential effectiveness.
View Article and Find Full Text PDF

Tissue engineering approaches need biomaterials with suitable properties to provide an appropriate environment for cell attachment and growth. The performance of these biomaterials can be greatly enhanced through the incorporation of bioactive agents. For this reason, we developed chitosan films with cell-attachment ability, rhBMP-2 carrier capacity, and good in vivo performance, and we employ them as covering for implantable materials.

View Article and Find Full Text PDF