Publications by authors named "Ana Chocarro-Calvo"

Within cells multiple related transcription factors targeting the same sequences may co-exist, leading to potential regulatory cooperativity, redundancy or competition. Yet the differential roles and biological functions of co-targeting transcription factors is poorly understood. In melanoma, three highly-related transcription factors are co-expressed: The mTORC1-regulated TFEB and TFE3, that are key effectors of a wide range of metabolic and microenvironmental cues; and MITF, that controls melanoma phenotypic identity.

View Article and Find Full Text PDF

Cancer initiation and progression result from genetic and epigenetic alterations caused by interactions between environmental and endogenous factors leading to aberrant cell signalling. Colorectal cancers (CRC) are linked to abnormal activation of the Wnt/β-catenin pathway, whose key feature is the nuclear accumulation of acetylated β-catenin in colon epithelial cells. Nuclear β-catenin acts as a transcriptional co-activator, targeting genes involved in cell proliferation and invasion.

View Article and Find Full Text PDF

Background: Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues.

View Article and Find Full Text PDF

We report two novel prodrug Pt(IV) complexes with bis-organosilane ligands in axial positions: -dichloro(diamine)--[3-(triethoxysilyl)propylcarbamate]platinum(IV) (Pt(IV)-biSi-1) and -dichloro(diisopropylamine)--[3-(triethoxysilyl) propyl carbamate]platinum(IV) (Pt(IV)-biSi-2). Pt(IV)-biSi-2 demonstrated enhanced cytotoxicity against colon cancer cells (HCT 116 and HT-29) compared with cisplatin and Pt(IV)-biSi-1. Notably, Pt(IV)-biSi-2 exhibited higher cytotoxicity toward cancer cells and lower toxicity on nontumorigenic intestinal cells (HIEC6).

View Article and Find Full Text PDF

Phenotypic diversity of cancer cells within tumors generated through bi-directional interactions with the tumor microenvironment has emerged as a major driver of disease progression and therapy resistance. Nutrient availability plays a critical role in determining phenotype, but whether specific nutrients elicit different responses on distinct phenotypes is poorly understood. Here we show, using melanoma as a model, that only MITF undifferentiated cells, but not MITF cells, are competent to drive lipolysis in human adipocytes.

View Article and Find Full Text PDF

Posttranslational modifications of epigenetic modifiers provide a flexible and timely mechanism for rapid adaptations to the dynamic environment of cancer cells. SIRT1 is an NAD-dependent epigenetic modifier whose activity is classically associated with healthy aging and longevity, but its function in cancer is not well understood. Here, we reveal that 1α,25-dihydroxyvitamin D (1,25(OH)D calcitriol), the active metabolite of vitamin D (VD), promotes SIRT1 activation through auto-deacetylation in human colon carcinoma cells, and identify lysine 610 as an essential driver of SIRT1 activity.

View Article and Find Full Text PDF

The existence of molecular links that facilitate colorectal cancer (CRC) development in the population with type 2 diabetes (T2D) is supported by substantial epidemiological evidence. This review summarizes how the systemic, metabolic and hormonal imbalances from T2D alter CRC cell metabolism, signalling and gene expression as well as their reciprocal meshing, with an overview of CRC molecular subtypes and animal models to study the diabetes-CRC cancer links. Metabolic and growth factor checkpoints ensure a physiological cell proliferation rate compatible with limited nutrient supply.

View Article and Find Full Text PDF

Obesity is the strongest known risk factor to develop type 2 diabetes (T2D) and both share a state of chronic, diffuse and low-grade inflammation, impaired immune responses and alterations in the composition and function of the microbiome. Notably, these hallmarks are shared with colorectal cancer (CRC), which is epidemiologically associated to obesity and T2D. Gut barrier damages in T2D destabilize the microbiome that metabolizes the diet and modulates the host immune response triggering inflammatory and proliferative pathways.

View Article and Find Full Text PDF

Coordination of gene expression with nutrient availability supports proliferation and homeostasis and is shaped by protein acetylation. Yet how physiological/pathological signals link acetylation to specific gene expression programs and whether such responses are cell-type-specific is unclear. AMP-activated protein kinase (AMPK) is a key energy sensor, activated by glucose limitation to resolve nutrient supply-demand imbalances, critical for diabetes and cancer.

View Article and Find Full Text PDF

Hollow mesoporous silica nanoparticles (HMSNs) consist of a network of cavities confined by mesoporous shells that have emerged as promising tools for drug delivery or diagnostic. The physicochemical properties of HMSNs are dictated by the synthesis conditions but which conditions affect which property and how it impacts on biological interactions is unclear. Here by changing the concentration of the structure-directing agent (SDA), the pH and the ratio between SDA and added salt (NaCl) we determine the effects in size, morphology, surface charge and density or degree of compaction (physicochemical properties) of HMSNs and define their impact on their biological interactions with human colon cancer or healthy cells at the level of cellular uptake and viability.

View Article and Find Full Text PDF

Phenotypic and metabolic heterogeneity within tumors is a major barrier to effective cancer therapy. How metabolism is implicated in specific phenotypes and whether lineage-restricted mechanisms control key metabolic vulnerabilities remain poorly understood. In melanoma, downregulation of the lineage addiction oncogene microphthalmia-associated transcription factor (MITF) is a hallmark of the proliferative-to-invasive phenotype switch, although how MITF promotes proliferation and suppresses invasion is poorly defined.

View Article and Find Full Text PDF

The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer.

View Article and Find Full Text PDF

Increasing evidence suggests a complex relationship between obesity, diabetes and cancer. Here we review the evidence for the association between obesity and diabetes and a wide range of cancer types. In many cases the evidence for a positive association is strong, but for other cancer types a more complex picture emerges with some site-specific cancers associated with obesity but not to diabetes, and some associated with type I but not type II diabetes.

View Article and Find Full Text PDF

Minutes after ingestion of fat or carbohydrates, vesicles stored in enteroendocrine cells release their content of incretin peptide hormones that, together with absorbed glucose, enhance insulin secretion by beta-pancreatic cells. Freshly-made incretins must therefore be packed into new vesicles in anticipation of the next meal with cells adjusting new incretin production to be proportional to the level of previous insulin release and absorbed blood glucose. Here we show that insulin stimulates the expression of the major human incretin, glucose-dependent insulinotropic peptide (GIP) in enteroendocrine cells but requires glucose to do it.

View Article and Find Full Text PDF

Extensive epidemiological studies suggest that the diabetic population is at higher risk of site-specific cancers. The diabetes-cancer link has been hypothesized to rely on various hormonal (insulin, IGF1, adipokines), immunological (inflammation), or metabolic (hyperglycemia) characteristics of the disease and even on certain treatments. Inflammation may have an important but incompletely understood role.

View Article and Find Full Text PDF

Nuclear accumulation of β-catenin, a widely recognized marker of poor cancer prognosis, drives cancer cell proliferation and senescence bypass and regulates incretins, critical regulators of fat and glucose metabolism. Diabetes, characterized by elevated blood glucose levels, is associated with increased cancer risk, partly because of increased insulin growth factor 1 signaling, but whether elevated glucose directly impacts cancer-associated signal-transduction pathways is unknown. Here, we show that high glucose is essential for nuclear localization of β-catenin in response to Wnt signaling.

View Article and Find Full Text PDF

Modulation of MAPK signaling duration by cAMP defines its physiological output by driving cells toward proliferation or differentiation. Understanding how the kinetics of MAPK signaling are integrated with other cellular signals is a key issue in development and cancer. Here we show that dopamine and cAMP-regulated neuronal phosphoprotein, 32 kDa (DARPP-32), a protein required for thyroid cell differentiation, determines whether MAPK/ERK activation is sustained or transient.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Ana Chocarro-Calvo"

  • - Ana Chocarro-Calvo's recent research focuses on the development of innovative cancer therapies, particularly leveraging nanotechnology and prodrug formulations to enhance drug efficacy and reduce side effects in chemotherapy.
  • - Key findings include the development of magnetically modified mitoxantrone mesoporous organosilica drugs for breast cancer, and the enhancement of cytotoxicity of Pt(IV) complexes against colon cancer cells, emphasizing the importance of drug delivery systems and their design.
  • - Additionally, her work explores the interactions between cancer cells and their microenvironment, particularly the impact of nutritional factors and metabolic changes on cancer progression and therapy resistance, revealing complex phenotypic behaviors in melanoma and colorectal cancer.