Endometriosis is a highly prevalent gynecological disease characterized by the presence of endometrium-like tissue outside the uterus, whose etiopathology is far from being elucidated. The most frequent complains of patients are pelvic pain and infertility. Increasing evidence supports the systemic impact of endometriosis suggesting that an intricate crosstalk among distinct organs underlies the development of the disease.
View Article and Find Full Text PDFBackground: Patients with endometriosis tend to have a low body mass index, suggesting an inverse relationship between body fat and risk of disease. This is supported by evidence that miRNAs differentially expressed in endometriosis induce browning of pre-adipocytes in vitro. Thus, we hypothesize that endometriosis may underlie adipose tissue (AT) dysfunction and browning.
View Article and Find Full Text PDFThis study aimed to evaluate if the treatment with metformin affects the morphologic structure, endothelial function, angiogenesis, inflammation and oxidation-responsive pathways in the heart of mice with surgically induced endometriosis. B6CBA/F1 mice (n = 37) were divided into four groups; Sham (S), Metformin (M), Endometriosis (E) and Metformin/Endometriosis (ME). The cross-sectional area of cardiomyocytes was assessed after Hematoxylin-Eosin staining and fibrosis after Picrosirius-Red staining.
View Article and Find Full Text PDFEndometriosis, a gynecological disease that affects reproductive age women is difficultly controlled in the long term by currently available treatments, prompting patients to adopt self-controlled interventions including dietary changes. The aim of this review is to provide evidence of how curcumin, quercetin, and resveratrol can act as natural interventions to control endometriosis. The review followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.
View Article and Find Full Text PDFAs the human ovarian follicle enlarges in the course of a regular cycle or following controlled ovarian stimulation, the changes in its structure reveal the oocyte environment composed of cumulus oophorus cells and the follicular fluid (FF).In contrast to the dynamic nature of cells, the fluid compartment appears as a reservoir rich in biomolecules. In some aspects, it is similar to the plasma, but it also exhibits differences that likely relate to its specific localization around the oocyte.
View Article and Find Full Text PDF