Magnetoelectric (ME) materials composed of magnetostrictive and piezoelectric phases have been the subject of decades of research due to their versatility and unique capability to couple the magnetic and electric properties of the matter. While these materials are often studied from a fundamental point of view, the 4.0 revolution (automation of traditional manufacturing and industrial practices, using modern smart technology) and the Internet of Things (IoT) context allows the perfect conditions for this type of materials being effectively/finally implemented in a variety of advanced applications.
View Article and Find Full Text PDFMagnetic sensors are mandatory in a broad range of applications nowadays, being the increasing interest on such sensors mainly driven by the growing demand of materials required by Industry 4.0 and the Internet of Things concept. Optimized power consumption, reliability, flexibility, versatility, lightweight and low-temperature fabrication are some of the technological requirements in which the scientific community is focusing efforts.
View Article and Find Full Text PDFThe search for more efficient therapeutic strategies and diagnosis tools is a continuous challenge. Advances in understanding the biological mechanisms behind diseases and tissues regeneration have widened the field of applications of particulate systems. Particles are no more just protective systems for the encapsulated drugs, but they play an active role in the success of the therapy.
View Article and Find Full Text PDFNanomedicine (Lond)
January 2015
The properties of surfaces define the acceptance and integration of biomaterials in vivo, as well as the material's efficiency when used at research or manufacturing levels. The presence of micro/nano-topographical structures and low surface energies could bring several advantages when highly repellent surfaces are employed in the biomedical field. Biomimetic superhydrophobic surfaces have been explored for diverse applications: as an intrinsic characteristic of biomaterials to be implanted; as materials that exhibit special interactions with biological entities; or to be used in ex vivo applications.
View Article and Find Full Text PDFInspired by natural structures, great attention has been devoted to the study and development of surfaces with extreme wettable properties. The meticulous study of natural systems revealed that the micro/nano-topography of the surface is critical to obtaining unique wettability features, including superhydrophobicity. However, the surface chemistry also has an important role in such surface characteristics.
View Article and Find Full Text PDFPlatelet lysate (PL) was encapsulated in collagen (Coll) millimetric gel beads, on biomimetic superhydrophobic surfaces, under mild conditions, with the aim of obtaining easy-to-handle formulations able to provide sustained release of multiple growth factors for skin ulcers treatment. The gel particles were prepared with various concentrations of PL incorporating or not stem cells, and tested as freshly prepared or after being freeze-dried or cryopreserved. Coll + PL particles were evaluated regarding degradation in collagenase-rich environment (simulating the aggressive environment of the chronic ulcers), sustained release of total protein, PDGF-BB and VEGF, cell proliferation (using particles as the only source of growth factors), scratch wound recovery and angiogenic capability.
View Article and Find Full Text PDF5-Fluorouracil (5-FU)-loaded chitosan microgels for oral and topical chemotherapy were prepared applying a superhydrophobic surface-based encapsulation technology. Drug-loaded chitosan dispersions were cross-linked and then coated with drug-free chitosan or pectin layers at the solid-air interface in a highly efficient and environment-friendly way. The size of the microgels (with diameters of ca.
View Article and Find Full Text PDFCell-based therapies for regenerative medicine have been characterized by the low retention and integration of injected cells into host structures. Cell immobilization in hydrogels for target cell delivery has been developed to circumvent this issue. In this work mesenchymal stem cells isolated from Wistar rats bone marrow (rMSCs) were immobilized in alginate beads fabricated using an innovative approach involving the gellification of the liquid precursor droplets onto biomimetic superhydrophobic surfaces without the need of any precipitation bath.
View Article and Find Full Text PDFExpert Opin Drug Deliv
February 2012
Introduction: Polymeric particles are ideal vehicles for controlled delivery applications due to their ability to encapsulate a variety of substances, namely low- and high-molecular mass therapeutics, antigens or DNA. Micro and nano scale spherical materials have been developed as carriers for therapies, using appropriated methodologies, in order to achieve a prolonged and controlled drug administration.
Areas Covered: This paper reviews the methodologies used for the production of polymeric micro/nanoparticles.
Purpose: To implement a bioinspired methodology using superhydrophobic surfaces suitable for producing smart hydrogel beads in which the bioactive substance is introduced in the particles during their formation.
Methods: Several superhydrophobic surfaces, including polystyrene, aluminum and copper, were prepared. Polymeric solutions composed by photo-crosslinked dextran-methacrylated and thermal responsive poly(N-isopropylacrylamide) mixed with a protein (insulin or albumin) were dropped on the superhydrophobic surfaces, and the obtained millimetric spheres were hardened in a dry environment under UV light.