Publications by authors named "Ana Casaca"

Although vertebrates display a large variety of forms and sizes, the mechanisms controlling the layout of the basic body plan are substantially conserved throughout the clade. Following gastrulation, head, trunk, and tail are sequentially generated through the continuous addition of tissue at the caudal embryonic end. Development of each of these major embryonic regions is regulated by a distinct genetic network.

View Article and Find Full Text PDF

During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak to the tailbud as the driver of axial extension. Genetic and molecular data indicate that is a key regulator of the trunk to tail transition. has been shown to control the switch of the neuro mesodermal-competent cells from the epiblast to the chordo-neural hinge to generate the tail bud.

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted on 1,245 hospital workers and 146 nursing home residents receiving the BNT162b2 mRNA vaccine to analyze their immune response to COVID-19 before and after vaccination.
  • Results showed that after the first dose, the immune response (specifically IgG levels) varied significantly among individuals and was lower in older participants.
  • The second dose improved the immune response across all age groups, highlighting the importance of not delaying doses and the need for ongoing monitoring in vulnerable populations like the elderly and immunosuppressed.
View Article and Find Full Text PDF

MOVE.TE is a non-profit participatory physiotherapy platform that aims at translating knowledge in the field of physiotherapy and developing freely available evidence-based physiotherapy programmes targeting the primary care services of the Portuguese National Health service. A group of volunteer academics and clinicians collaborated at different stages and time points to create the first ever falls prevention and management programme and guidance for Physiotherapy in primary care, in Portugal.

View Article and Find Full Text PDF

Precise regulation of Hox gene activity is essential to achieve proper control of animal embryonic development and to avoid generation of a variety of malignancies. This is a multilayered process, including complex polycistronic transcription, RNA processing, microRNA repression, long noncoding RNA regulation and sequence-specific translational control, acting together to achieve robust quantitative and qualitative Hox protein output. For many such mechanisms, the Hox cluster gene network has turned out to serve as a paradigmatic model for their study.

View Article and Find Full Text PDF

Aim: To further characterize the structure and nucleic acid binding properties of the 195 amino acid small delta antigen, S-HDAg, a study was made of a truncated form of S-HDAg, comprising amino acids 61-195 (∆60HDAg), thus lacking the domain considered necessary for dimerization and higher order multimerization.

Methods: Circular dichroism, and nuclear magnetic resonance experiments were used to assess the structure of ∆60HDAg. Nucleic acid binding properties were investigated by gel retardation assays.

View Article and Find Full Text PDF

Formation of the vertebrate axial skeleton requires coordinated Hox gene activity. Hox group 6 genes are involved in the formation of the thoracic area owing to their unique rib-promoting properties. Here we show that the linker region (LR) connecting the homeodomain and the hexapeptide is essential for Hoxb6 rib-promoting activity in mice.

View Article and Find Full Text PDF

It has long been known that Hox genes are central players in patterning the vertebrate axial skeleton. Extensive genetic studies in the mouse have revealed that the combinatorial activity of Hox genes along the anterior-posterior body axis specifies different vertebral identities. In addition, Hox genes were instrumental for the evolutionary diversification of the vertebrate body plan.

View Article and Find Full Text PDF

Patterning of the vertebrate skeleton requires the coordinated activity of Hox genes. In particular, Hox10 proteins are essential to set the transition from thoracic to lumbar vertebrae because of their rib-repressing activity. In snakes, however, the thoracic region extends well into Hox10-expressing areas of the embryo, suggesting that these proteins are unable to block rib formation.

View Article and Find Full Text PDF

Development of the vertebrate axial skeleton requires the concerted activity of several Hox genes. Among them, Hox genes belonging to the paralog group 10 are essential for the formation of the lumbar region of the vertebral column, owing to their capacity to block rib formation. In this work, we explored the basis for the rib-repressing activity of Hox10 proteins.

View Article and Find Full Text PDF

Background: Hepatitis delta virus (HDV) is considered to be a satellite virus of the Hepatitis B virus. The genome consists of a 1679 nt ssRNA molecule in which a single ORF was identified. This ORF codes for a unique protein, the Delta antigen (HDAg).

View Article and Find Full Text PDF

The small and large delta antigens (S-HDAg and L-HDAg, respectively) represent two forms of the only protein encoded by the hepatitis delta virus (HDV) RNA genome. Consequently, HDV relies, at a large extent, on the host cell machinery for replication and transcription. Until now, only a limited number of cellular proteins were identified as S-HDAg or L-HDAg partners being involved in the modulation of the virus life cycle.

View Article and Find Full Text PDF