Astrocytes are glial cells that play key roles in neuroinflammation, which is a common feature in diabetic encephalopathy and aging process. Metformin is an antidiabetic compound that shows neuroprotective properties, including in inflammatory models, but astroglial signaling pathways involved are still poorly known. Interferons α/β are cytokines that participate in antiviral responses and the lack of their signaling increases susceptible to viral infections.
View Article and Find Full Text PDFPhysical exercise can induce brain plasticity and reduce the cognitive decline observed in type 1 diabetes mellitus (T1DM). We investigated the effects of physical exercise to prevent or reverse spatial memory deficits produced by diabetes and some biochemical and immunohistochemical changes in hippocampal astrocytes of T1DM model. In this study, 56 male Wistar rats were divided in four groups: trained control (TC), non-trained control (NTC), trained diabetic (TD) and non-trained diabetic (NTD).
View Article and Find Full Text PDFBrain metabolism is highly dependent on glucose, which is derived from the blood circulation and metabolized by the astrocytes and other neural cells via several pathways. Glucose uptake in the brain does not involve insulin-dependent glucose transporters; however, this hormone affects the glucose influx to the brain. Changes in cerebrospinal fluid levels of S100B (an astrocyte-derived protein) have been associated with alterations in glucose metabolism; however, there is no evidence whether insulin modulates glucose metabolism and S100B secretion.
View Article and Find Full Text PDFAlcohol consumption by women during gestation has become increasingly common. Although it is widely accepted that exposure to high doses of ethanol has long-lasting detrimental effects on brain development, the case for moderate doses is underappreciated, and benchmark studies have demonstrated structural and behavioral defects associated with moderate prenatal alcohol exposure in humans and animal models. This study aimed to investigate the influence of in utero exposure to moderate levels of ethanol throughout pregnancy on learning/memory, anxiety parameters and neuroglial parameters in adolescent offspring.
View Article and Find Full Text PDFGlutamate is the major excitatory neurotransmitter in the brain and over-stimulation of the glutamate receptors, NMDA, AMPA and kainate (KA), may cause neuronal death in epilepsy, seizures and neurodegenerative diseases. Mitochondria have critical cellular functions that influence neuronal excitability, such as regulation of Ca(2+) homeostasis and ATP production to maintain Na(+)K(+)-ATPase in the central nervous system (CNS). However, mitochondria are also the primary site of reactive oxygen species (ROS) production, and oxidative stress can induce cellular damage.
View Article and Find Full Text PDFLectins are proteins capable of reversible binding to the carbohydrates in glycoconjugates that can regulate many physiological and pathological events. Galectin-1, a β-galactoside-binding lectin, is expressed in the central nervous system (CNS) and exhibits neuroprotective functions. Additionally, lectins isolated from plants have demonstrated beneficial action in the CNS.
View Article and Find Full Text PDFPhysical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most prevalent form of dementia. Intracerebroventricular (ICV) infusion of streptozotocin (STZ) provides a relevant animal model of chronic brain dysfunction that is characterized by long-term and progressive deficits in learning, memory, and cognitive behavior, along with a permanent and ongoing cerebral energy deficit. Numerous studies on green tea epigallocatechin gallate (EGCG) demonstrate its beneficial effects on cognition and memory.
View Article and Find Full Text PDFMethylglyoxal is a dicarbonyl compound that is physiologically produced by enzymatic and non-enzymatic reactions. It can lead to cytotoxicity, which is mainly related to Advanced Glycation End Products (AGEs) formation. Methylglyoxal and AGEs are involved in the pathogenesis of Neurodegenerative Diseases (ND) and, in these situations, can cause the impairment of energetic metabolism.
View Article and Find Full Text PDFDiabetes mellitus is a disease associated with several changes in the central nervous system, including oxidative stress and abnormal glutamatergic neurotransmission, and the astrocytes play an essential role in these alterations. In vitro studies of astroglial function have been performed using cultures of primary astrocytes or C6 glioma cells. Herein, we investigated glutamate uptake, glutamine synthetase and S100B secretion in C6 glioma cells cultured in a high-glucose environment, as well as some parameters of oxidative stress and damage.
View Article and Find Full Text PDFSeveral types of animal models have been developed to investigate Alzheimer's disease (AD). Okadaic acid (OA), a potent inhibitor of phosphatases 1 and 2A, induces characteristics that resemble AD-like pathology. Memory impairment induced by intra-hippocampal injection of OA has been reported, accompanied by remarkable neuropathological changes including hippocampal neurodegeneration, a paired helical filament-like phosphorylation of tau protein, and formation of β-amyloid containing plaque-like structures.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
November 2011
Astrocytes play a fundamental role in glutamate metabolism by regulating the extracellular levels of glutamate and intracellular levels of glutamine. They also participate in antioxidant defenses, due to the synthesis of glutathione, coupled to glutamate metabolism. Although the cause of Alzheimer's disease (AD) remains elusive, some changes in neurochemical parameters, such as glutamate uptake, glutamine synthetase activity and glutathione have been investigated in this disease.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
July 2011
Astrocytes express dopamine receptors and respond to dopamine stimulation. However, the role of astrocytes in psychiatric disorders and the effects of antipsychotics on astroglial cells have only been investigated recently. S100B is a glial-derived protein, commonly used as a marker of astroglial activation in psychiatric disorders, particularly schizophrenia.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
August 2008
S100B is a calcium-binding protein, produced and secreted by astrocytes, which has a putative paracrine neurotrophic activity. Clinical studies have suggested that peripheral elevation of this protein is positively correlated with a therapeutic antidepressant response, particularly to selective serotonin reuptake inhibitors (SSRIs); however, the mechanism underlying this response remains unclear. Here, we measured S100B secretion directly in hippocampal astrocyte cultures and hippocampal slices exposed to fluoxetine and observed a significant increment of S100B release in the presence of this SSRI, apparently dependent on protein kinase A (PKA).
View Article and Find Full Text PDFPre- and postnatal protein malnutrition (PMN) adversely affects the developing brain in numerous ways, but only a few studies have investigated specific glial parameters. This study aimed to evaluate specific glial changes of rats exposed to pre and postnatal PMN, based on glial fibrillary acidic protein (GFAP) and S100B immunocontents as well as glutamine synthetase (GS), in cerebral cortex, hippocampus, cerebellum and cerebrospinal fluid, on the 2nd, 15th and 60th postnatal days. We found increases in GFAP, S100B and GS in the cerebral cortex at birth, suggesting an astrogliosis.
View Article and Find Full Text PDFS100B is an astrocyte calcium-binding protein that plays a regulatory role in the cytoskeleton and cell cycle. Moreover, extracellular S100B, a marker of glial activation in several conditions of brain injury, has a trophic or apoptotic effect on neurons, depending on its concentration. Hyperglycemic rats show changes in glial parameters, including S100B expression.
View Article and Find Full Text PDFGlial fibrillary acid protein (GFAP) is used commonly as a marker of astrogliosis and astrocyte activation in several situations involving brain injury. Its content may be measured by immunocytochemistry, immunoblotting or enzyme-linked immunosorbent assay (ELISA), usually employing commercial antibodies. Two major post-translational modifications in GFAP (phosphorylation and proteolysis) may alter the interpretation of results or for immunoassay standardization.
View Article and Find Full Text PDFThe brain is particularly susceptible to oxidative insults and its antioxidant defense is dependent on its glutathione content. Protein malnutrition (PMN) is an important and very common insult during development and compromises antioxidant defenses in the body, particularly glutathione levels. We investigated whether brain glutathione content and related metabolic pathways, predominantly regulated by astrocytes (particularly glutamate uptake and glutamine synthesis), are altered by pre- and postnatal PMN in rats.
View Article and Find Full Text PDFSeveral molecules have been shown to be involved in glial-neuronal communication, including S100B, an astrocyte-derived neurotrophic cytokine. Extracellular S100B protects hippocampal neurons from excitotoxic damage, whilst toxic levels of glutamate to neurons have been shown to reduce S100B secretion in astrocytes and brain slices, by an unknown mechanism. Here, we investigate which mechanisms are possibly involved in this effect in primary cultures of hippocampal astrocytes using glutamate agonists and glutamate uptake inhibitors.
View Article and Find Full Text PDF1.S100B is a calcium-binding protein expressed and secreted by astrocytes, which has been implicated in glial-neuronal communication. Extracellular S100B appears to protect hippocampal neurons against toxic concentrations of glutamate.
View Article and Find Full Text PDF1. Stellation of astrocytes in culture involves a complex rearrangement of microfilaments, intermediate filaments, and microtubules, which reflects in part the plasticity of these cells observed during development or after injury. 2.
View Article and Find Full Text PDF