Publications by authors named "Ana Carina Silva"

Recent clinical trials have shown the potential of oncolytic adenoviruses as a cancer immunotherapy. A successful transition of oncolytic adenovirus to clinical applications requires efficient and good manufacturing practice compatible production and purification bioprocesses. Suspension cultures are preferable for virus production as they can reduce process costs and increase product quality and consistency.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) have recently raised great interest as a promising biological system for designing effective cancer therapies. The scarcity of CSCs and the consequent low numbers obtained from biopsies represent a major hurdle to the development of such strategies. It is therefore necessary to design robust scalable methods to enable efficient expansion of bona fide CSCs .

View Article and Find Full Text PDF

Introduction: Central nervous system drug development has registered high attrition rates, mainly due to the lack of efficacy of drug candidates, highlighting the low reliability of the models used in early-stage drug development and the need for new in vitro human cell-based models and assays to accurately identify and validate drug candidates. 3D human cell models can include different tissue cell types and represent the spatiotemporal context of the original tissue (co-cultures), allowing the establishment of biologically-relevant cell-cell and cell-extracellular matrix interactions. Nevertheless, exploitation of these 3D models for neuroprotection assessment has been limited due to the lack of data to validate such 3D co-culture approaches.

View Article and Find Full Text PDF

Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5).

View Article and Find Full Text PDF

Recombinant adenovirus vectors (AdVs) have been used for the development of vaccines, as gene therapy vectors and for protein production. Currently, the production of clinical grade batches of recombinant E1-deleted adenovirus type 5 vectors is performed using human-derived HEK293 or PER.C6(®) cell lines.

View Article and Find Full Text PDF

In this paper extended tests on a new candidate formulation for Peste des Petits Ruminants (PPR) vaccine carried out at National Veterinary Institute (NVI) in Ethiopia are presented. This work was performed in the frame of the VACNADA project from GALVmed which aimed at procuring vaccines against neglected veterinary diseases to African vaccine producing laboratories, in particular PPR. After the eradication of Rinderpest, Peste des Petits Ruminants became the next veterinary disease on target for elimination, requiring an effective and thermostable vaccine.

View Article and Find Full Text PDF

(1)H-Nuclear magnetic resonance ((1)H-NMR) spectroscopy is a powerful technique to analyze the composition of complex mixtures based on the particular proton fingerprint of each molecule. Here we describe a protocol for exometabolome analysis of mammalian cells using this technique, including sample preparation, spectra acquisition, and integration. The potential of this technique is exemplified by application to cultures of a Chinese hamster ovary (CHO) cell line.

View Article and Find Full Text PDF

Recombinant adenoviruses (AdV) are highly efficient at gene transfer for a broad spectrum of cell types and species. They became one of the vectors of choice for gene delivery and expression of foreign proteins in gene therapy and vaccination purposes. To meet the need of significant amounts of adenoviral vectors for preclinical and possibly clinical uses, scalable and reproducible production processes are required.

View Article and Find Full Text PDF

An acoustic quartz crystal microbalance (QCM) was used to signal and follow the cell‑adhesion process of epithelial cells [human embryonic kidney(HEK) 293T and cervical cancer (HeLa) and fibroblasts [African Green Monkey kidney cells (COS-7)] onto gold surfaces. Cells were applied on the sensor and grown under serum-free and serum-supplemented culture media. The sensor resonance frequency (Δf) and motional resistance (ΔR) variations were measured during cell growth to monitor cell adhesion processes.

View Article and Find Full Text PDF

Biocompatibility of polymers is an important parameter for the successful application of polymers in tissue engineering. In this work, quartz crystal microbalance (QCM) devices were used to follow the adhesion of NIH 3T3 fibroblasts to QCM surfaces modified with fibronectin (FN) and poly-D-lysine (PDL). The variations in sensor resonant frequency (Δf) and motional resistance (ΔR), monitored as the sensor signal, revealed that cell adhesion was favored in the PDL-coated QCMs.

View Article and Find Full Text PDF

The main focus of this work was the improvement of the stability of the current PPRV vaccine. First, new formulations based on the Tris buffer were tested, with and without the addition of sucrose and trehalose and compared with the formulation normally used to stabilize the vaccine, the Weybridge medium. The results show a virus half-life of 21 h at 37°C and 1 month at 4°C for the Tris/trehalose liquid formulation and, in the lyophilized form, the formulation was able to maintain the viral titer above the 1 × 10(4) TCID(50)/mL (>10 doses/mL) for at least 21 months at 4°C (0.

View Article and Find Full Text PDF

Replication deficient adenovirus vectors are frequently used tools for the delivery of transgenes in vitro and in vivo. In addition, several therapeutic products based on adenovirus are under clinical development. This review outlines adenovirus vector production discussing different vector types, available production cell lines and state of the art of production process development and purification.

View Article and Find Full Text PDF

The lactose in cheese whey is an interesting substrate for the production of bulk commodities such as bio-ethanol, due to the large amounts of whey surplus generated globally. In this work, we studied the performance of a recombinant Saccharomyces cerevisiae strain expressing the lactose permease and intracellular beta-galactosidase from Kluyveromyces lactis in fermentations of deproteinized concentrated cheese whey powder solutions. Supplementation with 10 g/l of corn steep liquor significantly enhanced whey fermentation, resulting in the production of 7.

View Article and Find Full Text PDF

Piezoelectric sensors are acoustic sensors that enable the selective and label-free detection of biological events in real time. These sensors generate acoustic waves and utilize measurements of the variation of the wave propagation properties as a signal for probing events at the sensor surface. Quartz crystal microbalance (QCM) devices, the most widespread acoustic resonators, allow the study of viscoelastic properties of matter, the adsorption of molecules, or the motility of living cells.

View Article and Find Full Text PDF

Peste des Petits ruminants (PPR) is considered as one of the major constraints to the productivity of small ruminants in Africa and Asian countries. Currently PPR control is done by vaccination with an attenuated PPR strain (Nigeria 75/1) produced in monolayers of Vero cells grown in roller bottles or static flasks. This work focuses on the production of a PPR vaccine strain using stirred conditions as an advanced option for process scale-up.

View Article and Find Full Text PDF

The objective of this study is the incorporation of adenoviral vectors into a microparticulate system adequate for mucosal delivery. Microencapsulation of the vectors was accomplished by ionotropic coacervation of chitosan, using bile salts as counter-anion. The process was optimized in order to promote high encapsulation efficiency, with a minimal loss of viral infectivity.

View Article and Find Full Text PDF

In the past decade there has been an increase in the application of viral vectors in the laboratory and clinical trials of human gene therapy, retroviral and adenoviral vectors among the most used. However, the limited stability of these vectors creates problems in the design of experiments, transport, and storage. Vectors stored at -80 degrees C must be quickly shipped on dry ice, which is somewhat cumbersome.

View Article and Find Full Text PDF