Publications by authors named "Ana Cadete"

Intranasal vaccination represents a promising approach for preventing disease caused by respiratory pathogens by eliciting a mucosal immune response in the respiratory tract that may act as an early barrier to infection and transmission. This study investigated immunogenicity and protective efficacy of intranasally administered messenger RNA (mRNA)-lipid nanoparticle (LNP) encapsulated vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Syrian golden hamsters. Intranasal mRNA-LNP vaccination systemically induced spike-specific binding [immunoglobulin G (IgG) and IgA] and neutralizing antibodies.

View Article and Find Full Text PDF

Preparation of sophisticated delivery systems for nanomedicine applications generally involve multi-step procedures using organic solvents. In this study, we have developed a simple self-assembling process to prepare docetaxel-loaded hyaluronic acid (HA) nanocapsules by using a self-emulsification process without the need of organic solvents, heat or high shear forces. These nanocapsules, which comprise an oily core and a shell consisting of an assembly of surfactants and hydrophobically modified HA, have a mean size of 130 nm, a zeta potential of -20 mV, and exhibit high docetaxel encapsulation efficiency.

View Article and Find Full Text PDF

Purpose: Gasdermin B (GSDMB) overexpression/amplification occurs in about 60% of HER2 breast cancers, where it promotes cell migration, resistance to anti-HER2 therapies, and poor clinical outcome. Thus, we tackle GSDMB cytoplasmic overexpression as a new therapeutic target in HER2 breast cancers.

Experimental Design: We have developed a new targeted nanomedicine based on hyaluronic acid-biocompatible nanocapsules, which allow the intracellular delivery of a specific anti-GSDMB antibody into HER2 breast cancer cells both and .

View Article and Find Full Text PDF

Herein, an injectable formulation composed of a low molecular weight gelator (LMWG) based hydrogel and drug-loaded polymeric nanocapsules (NCs) is described. The NCs, made of hyaluronic acid and polyglutamic acid and loaded with C14-Gemcitabine (GEM C14), showed a size of 40 and 80 nm and a encapsulation efficiency >90%. These NCs exhibited a capacity to control the release of the encapsulated drug for >1 month.

View Article and Find Full Text PDF

Hyaluronic acid is a natural polysaccharide that has been widely explored for the development of anticancer therapies due to its ability to target cancer cells. Moreover, advances made in the last decade have revealed the versatility of this biomaterial in the design of multifunctional carriers, intended for the delivery of a variety of bioactive molecules, including polynucleotides, immunomodulatory drugs and imaging agents. In this review, we aim to provide an overview of the major recent achievements in this field, highlighting the application of the newly developed nanostructures in combination therapies, immunomodulation and theranostics.

View Article and Find Full Text PDF

Strangles is an extremely contagious and sometimes deadly disease of the Equidae. The development of an effective vaccine should constitute an important asset to eradicate this worldwide infectious disease. In this work, we address the development of a mucosal vaccine by using a Supercritical Enhanced Atomization (SEA) spray-drying technique.

View Article and Find Full Text PDF