Publications by authors named "Ana C G Grodzki"

Acute intoxication with high levels of organophosphate (OP) cholinesterase inhibitors can cause cholinergic crisis, which is associated with acute, life-threatening parasympathomimetic symptoms, respiratory depression and seizures that can rapidly progress to status epilepticus (SE). Clinical and experimental data demonstrate that individuals who survive these acute neurotoxic effects often develop significant chronic morbidity, including behavioral deficits. The pathogenic mechanism(s) that link acute OP intoxication to chronic neurological deficits remain speculative.

View Article and Find Full Text PDF

Linoleic acid (LA, 18:2n-6) is an essential nutrient for optimal infant growth and brain development. The effects of LA in the brain are thought to be mediated by oxygenated metabolites of LA known as oxidized LA metabolites (OXLAMs), but evidence is lacking to directly support this hypothesis. This study investigated whether OXLAMs modulate key neurodevelopmental processes including axon outgrowth, dendritic arborization, cell viability and synaptic connectivity.

View Article and Find Full Text PDF

Cortical neuron atrophy is a hallmark of depression and includes neurite retraction, dendritic spine loss, and decreased synaptic density. Psychoplastogens, small molecules capable of rapidly promoting cortical neuron growth, have been hypothesized to produce long-lasting positive effects on behavior by rectifying these deleterious structural and functional changes. Here we demonstrate that ketamine and LSD, psychoplastogens from two structurally distinct chemical classes, promote sustained growth of cortical neurons after only short periods of stimulation.

View Article and Find Full Text PDF

Epidemiologic studies link organophosphorus pesticides (OPs) to increased incidence of asthma. In guinea pigs, OP-induced airway hyperreactivity requires macrophages and TNF-α. Here, we determined whether OPs interact directly with macrophages to alter cytokine expression or release.

View Article and Find Full Text PDF

Neuropathic pain is a maladaptive immune response to peripheral nerve injury that causes a chronic painful condition refractory to most analgesics. Nitric oxide (NO), which is produced by nitric oxide synthases (NOSs), has been implicated as a key factor in the pathogenesis of neuropathic pain. β-Carbolines are a large group of natural and synthetic indole alkaloids, some of which block activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), a predominant transcriptional regulator of NOS expression.

View Article and Find Full Text PDF

The human THP-1 cell line is widely used as an in vitro model system for studying macrophage differentiation and function. Conventional culture conditions for these cells consist of ambient oxygen pressure (∼20% v/v) and medium supplemented with the thiol 2-mercaptoethanol (2-ME) and serum. In consideration of the redox activities of O₂ and 2-ME, and the extensive experimental evidence supporting a role for reactive oxygen species (ROS) in the differentiation and function of macrophages, we addressed the question of whether culturing THP-1 cells under a more physiologically relevant oxygen tension (5% O₂) in the absence of 2-ME and serum would alter THP-1 cell physiology.

View Article and Find Full Text PDF

M2 muscarinic receptors are expressed on both parasympathetic and sympathetic nerve endings where they function as autoinhibitory receptors to limit release of acetylcholine and norepinephrine, respectively. M2 muscarinic receptor expression on parasympathetic nerves is decreased by viral infection and by gamma-interferon (IFNγ) and increased by dexamethasone; and these effects are of clinical relevance in the etiology and treatment of asthma. Whether IFNγ and dexamethasone similarly modulate M2 receptor expression on sympathetic nerves is not known.

View Article and Find Full Text PDF

Background: Mast cells have recently gained new importance as immunoregulatory cells that are involved in numerous pathological processes. One result of these processes is an increase in mast cell numbers at peripheral sites. This study was undertaken to determine the mast cell response in the peritoneal cavity and bone marrow during repopulation of the peritoneal cavity in rats.

View Article and Find Full Text PDF

High affinity IgE receptor (FcvarepsilonRI)-induced activation of mast cells results in degranulation and generation of leukotrienes and cytokines. FcvarepsilonRI-induced mast cell activation was analyzed at a single cell basis using a rat basophilic leukemia (RBL-2H3) cell line transfected with a reporter plasmid containing three tandem NFAT (nuclear factor of activated T cells) binding sites fused to enhanced green fluorescent protein (GFP). Surprisingly, with this sensitive detection system, there is activation of IgE sensitized cells at concentrations of antigen as low as 10pg/ml, which was 10-fold lower than was detected by degranulation.

View Article and Find Full Text PDF

Sequential immunomagnetic isolation with 2 monoclonal antibodies was used to purify and characterize an undifferentiated mast cell in adult mouse bone marrow that had not been previously recognized. This cell represents 0.02% of the cells in the bone marrow, is CD34(+), CD13(+), and c-kit(+), and does not express FcepsilonRI.

View Article and Find Full Text PDF

To investigate the role of phospholipase D (PLD) in FcepsilonRI signaling, the wild-type or the catalytically inactive forms of PLD1 or PLD2 were stably overexpressed in RBL-2H3 mast cells. FcepsilonRI stimulation resulted in the activation of both PLD1 and PLD2. However, PLD1 was the source of most of the receptor-induced PLD activity.

View Article and Find Full Text PDF