Publications by authors named "Ana Butron"

Hydroxycinnamates, like ferulate (FA) and -coumarate (CA), are important components of maize cell walls, which influence pest resistance, ruminal digestibility, and biofuel production. Increasing their concentration has been linked to increased pest resistance, but also may lead to a decrease in nutritional value or bioethanol production efficiency. Therefore, improving forage quality or biofuel production without compromising plant resistance and a thorough understanding of the biosynthesis and deposition of these compounds is necessary, especially in stover, which is the feedstock for second-generation biofuel production and determines animal forage quality.

View Article and Find Full Text PDF

Background: The crosslinking of maize cell wall components, particularly mediated by the formation of ferulic acid dimers or diferulates, has been associated with important crop valorization traits such as increased pest resistance, lower forage digestibility, or reduced bioethanol production. However, these relationships were based on studies performed using diverse unrelated inbred lines and/or populations, so genetic background could interfere on these associations.

Results: In the present research, the success of a pedigree selection program aimed to obtain inbred lines from a common antecessor with contrasting diferulate concentration was evaluated.

View Article and Find Full Text PDF

Introduction: Validations of previously detected quantitative trait loci (QTLs) to assess their reliability are crucial before implementing breeding programs. The objective of this study was to determine the reliability and practical usefulness of previously reported QTLs for resistance to stem tunneling by the Mediterranean stem borer (MSB) and yield. These authors used approximately 600 recombinant inbred lines (RILs) from a multiparent advanced generation intercross (MAGIC) population to map QTL using a genome-wide association study (GWAS) approach.

View Article and Find Full Text PDF

Phenological match/mismatch between cultivated plants and their pest could impact pest infestation dynamics in the field. To explore how such match/mismatch of plant and pest phenologies may interact with plant defense dynamics, we studied the infestation dynamics of maize by one of its main pests in Europe, the European Corn Borer (Ostrinia nubilalis; Lepidoptera: Crambidae). A two-year field experiment was carried out on a collection of 23 maize inbred lines contrasted for their earliness.

View Article and Find Full Text PDF

The ECPGR European Evaluation Network (EVA) for Maize involves genebanks, research institutions, and private breeding companies from nine countries focusing on the valorization of maize genetic resources across Europe. This study describes a diverse collection of 626 local landraces and traditional varieties of maize ( L.) from nine European genebanks, including criteria for selection of the collection and its genetic and phenotypic diversity.

View Article and Find Full Text PDF

poses a threat to worldwide maize production due to its ability to infect maize kernel and synthesize fumonisins that can be accumulated above safety levels for humans and animals. Maize breeding has been proposed as key tool to decrease kernel contamination with fumonisins, but metabolic studies complementary to genomic approaches are necessary to disclose the complexity of maize resistance. An untargeted metabolomic study was proposed using inbreds genetically related but with contrasting levels of resistance in order to uncover pathways implicated in resistance to Fusarium ear rot (FER) and fumonisin contamination in the maize kernel and to look for possible biomarkers.

View Article and Find Full Text PDF

In temperate world-wide regions, maize kernels are often infected with the fumonisin-producing fungus which poses food and feed threats to animals and humans. As maize breeding has been revealed as one of the main tools with which to reduce kernel contamination with fumonisins, a pedigree selection program for increased resistance to Fusarium ear rot (FER), a trait highly correlated with kernel fumonisin content, was initiated in 2014 with the aim of obtaining inbred lines (named EPFUM) with resistance to kernel contamination with fumonisins and adapted to our environmental conditions. The new released EPFUM inbreds, their parental inbreds, hybrids involving crosses of one or two EPFUM inbreds, as well as commercial hybrids were evaluated in the current study.

View Article and Find Full Text PDF

Introduction: The study of yield and resistance/tolerance to pest are related traits fundamental for maize breeding programs. Genomic selection (GS), which uses all marker information to calculate genomic breeding values, is presented as an emerging alternative to phenotypic and marker-assisted selections for improving complex traits controlled by many genes with small effects. Therefore, although phenotypic selection (PS) has been effective for increasing resistance and yield under high infestation with maize stem borers, higher genetic gains are expected to be obtained through GS based on the complex architecture of both traits.

View Article and Find Full Text PDF

is a causal agent of maize ear rot and produces fumonisins, which are mycotoxins that are toxic to animals and humans. In this study, quantitative trait loci (QTLs) and bulk-segregant RNA-seq approaches were used to uncover genomic regions and pathways involved in resistance to ear rot (FER) and to fumonisin accumulation in maize kernels. Genomic regions at bins 4.

View Article and Find Full Text PDF

Maize kernel is exposed to several fungal species, most notably Fusarium verticillioides, which can contaminate maize kernels with fumonisins. In an effort to increase genetic gains and avoid the laborious tasks of conventional breeding, the use of marker-assisted selection or genomic selection programs was proposed. To this end, in the present study a Genome Wide Association Study (GWAS) was performed on 339 RILs of a Multiparental Advanced Generation InterCross (MAGIC) population that had previously been used to locate Quantitative Trait Locus (QTL) for resistance to Fusarium Ear Rot (FER).

View Article and Find Full Text PDF

Limited attention has been paid to maize ( L.) resistance induced by corn borer damage, although evidence shows that induced defenses have lower resource allocation costs than constitutive defenses. Maize responses to short- and long-term feeding by the Mediterranean corn borer (MCB, ) have been previously studied, but the suggested differences between responses could be due to experimental differences.

View Article and Find Full Text PDF

The cell wall putatively plays a role in host-plant resistance to phytopathogens. Here, we investigated which cell wall-bound phenolic compounds have determining roles in maize (Zea mays) resistance to attack by the Mediterranean corn borer Sesamia nonagrioides (Lefèbvre). Diverse sets of maize genotypes having contrasting hydroxycinnamate contents and borer resistance levels were evaluated.

View Article and Find Full Text PDF

Food contamination with mycotoxins is a worldwide concern, because these toxins produced by several fungal species have detrimental effects on animal and/or human health. In maize, fumonisins are among the toxins with the highest threatening potential because they are mainly produced by , which is distributed worldwide. Plant breeding has emerged as an effective and environmentally safe method to reduce fumonisin levels in maize kernels, but although phenotypic selection has proved effective for improving resistance to fumonisin contamination, further resources should be mobilized to meet farmers' needs.

View Article and Find Full Text PDF

Background: Corn borers constitute an important pest of maize around the world; in particular Sesamia nonagrioides Lefèbvre, named Mediterranean corn borer (MCB), causes important losses in Southern Europe. Methods of selection can be combined with transgenic approaches to increase the efficiency and durability of the resistance to corn borers. Previous studies of the genetic factors involved in resistance to MCB have been carried out using bi-parental populations that have low resolution or using association inbred panels that have a low power to detect rare alleles.

View Article and Find Full Text PDF

Plant long-term response against chewing insects could become stronger than initial reactions and even turn into systemic. The objectives of the present study were 1) to evaluate whether the long-running attack to the stem by corn borers can improve the stem antibiotic properties; 2) to check whether hydroxycinnamic acids could be involved in this antibiotic response; 3) and to check whether elicitation by Sesamia nonagrioides Lef. (Lepidoptera: Noctuidae) regurgitant could activate long-term plant responses.

View Article and Find Full Text PDF

Elevational gradients have been highly useful for understanding the underlying forces driving variation in plant traits and plant-insect herbivore interactions. A widely held view from these studies has been that greater herbivory under warmer and less variable climatic conditions found at low elevations has resulted in stronger herbivore selection on plant defences. However, this prediction has been called into question by conflicting empirical evidence, which could be explained by a number of causes such as an incomplete assessment of defensive strategies (ignoring other axes of defence such as defence inducibility) or unaccounted variation in abiotic factors along elevational clines.

View Article and Find Full Text PDF

Background: Sesamia nonagrioides Lefebvere (Mediterranean corn borer, MCB) is the main pest of maize in the Mediterranean area. QTL for MCB stalk tunneling and grain yield under high MCB infestation had been located at bin 8.03-8.

View Article and Find Full Text PDF

Biogeographical factors and phylogenetic history are key determinants of inter-specific variation in plant defences. However, few studies have conducted broad-scale geographical comparisons of plant defences while controlling for phylogenetic relationships, and, in doing so, none have separated constitutive from induced defences. This gap has limited our understanding of how historical or large-scale processes mediate biogeographical patterns in plant defences since these may be contingent upon shared evolutionary history and phylogenetic constraints.

View Article and Find Full Text PDF

Plants defend themselves against herbivores by activating a plethora of genetic and biochemical mechanisms aimed at reducing plant damage and insect survival. The short-term plant response to insect attack is well understood, but less is known about the maintenance of this response over time. We performed transcriptomic and metabolomics analyses in order to identify genes and metabolites involved in the long-term response of maize to attack by the corn borer .

View Article and Find Full Text PDF

The Mediterranean corn borer (MCB), , is a major pest of maize, , in Mediterranean countries, inflicting significant kernel yield losses. For that reason, it necessary to know the genetic mechanisms that regulate the agronomic and resistance traits. A quantitative trait loci (QTL) mapping study for yield, resistance against MCB attack, and other relevant agronomic traits was performed using a recombinant inbred line (RIL) population derived from the cross A637 × A509 that is expected to segregate for yield, and ear, and stalk resistance to MCB.

View Article and Find Full Text PDF

Despite the importance of heterosis and the efforts to comprehend this phenomenon, its molecular bases are still unknown. In this study, we intended to detect Quantitative trait loci (QTL) for mid-parent heterosis under infestation with the Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) using a North Carolina design III approach with a RIL population derived from a European flint inbred (EP42) × American dent inbred (A637) cross.

View Article and Find Full Text PDF

Background: Plants can respond to insect attack via defense mechanisms that reduce insect performance. In this study, we examined the effects of several treatments applied to two maize genotypes (one resistant, one susceptible) on the subsequent growth and survival of Sesamia nonagrioides Lef. (Mediterranean corn borer, MCB) larvae.

View Article and Find Full Text PDF

Previous results suggest a relationship between maize hydroxycinnamate concentration in the pith tissues and resistance to stem tunneling by Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) larvae. This study performs a more precise experiment, mapping an F2 derived from the cross between two inbreds with contrasting levels for hydroxycinnamates EP125 × PB130.

View Article and Find Full Text PDF

Background: A QTL mapping study for maize resistance to the Mediterranean corn borer (MCB) was performed with a RIL population derived from the cross B73 × CML103. To develop commercial inbreds of maize resistant to the MCB for use in Europe, it would be useful to transfer resistance from tropical germplasm like the subtropical inbred CML103 to temperate lines. The inbred B73 was chosen as representative of the Stiff Stock heterotic group, a major heterotic group used in hybrid grown in both North American and Europe.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiongrg3ebpifmig7s940jb0ksfpvr39sqjt): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once