Publications by authors named "Ana Buj-Bello"

Article Synopsis
  • * ACDase deficiency leads to harmful buildup of ceramides, causing inflammation and affecting both the nervous and peripheral systems in varying degrees.
  • * Currently, there are no specific or curative treatments for these diseases; the text reviews their clinical characteristics, enzyme roles, mouse models used for research, and potential therapies.
View Article and Find Full Text PDF

Mitochondria-endoplasmic reticulum (ER) contact sites (MERCs) emerged to play critical roles in numerous cellular processes, and their dysregulation has been associated to neurodegenerative disorders. Mutations in the SPG4 gene coding for spastin are among the main causes of hereditary spastic paraplegia (HSP). Spastin binds and severs microtubules, and the long isoform of this protein, namely M1, spans the outer leaflet of ER membrane where it interacts with other ER-HSP proteins.

View Article and Find Full Text PDF

The Myotubular and Centronuclear Myopathy Registry is an international research database containing key longitudinal data on a diverse and growing cohort of individuals affected by this group of rare and ultra-rare neuromuscular conditions. It can inform and support all areas of translational research including epidemiological and natural history studies, clinical trial feasibility planning, recruitment for clinical trials or other research studies, stand-alone clinical studies, standards of care development, and provision of real-world evidence data. For ten years, it has also served as a valuable communications tool and provided a link between the scientific and patient communities.

View Article and Find Full Text PDF

Background: X-linked myotubular myopathy is a rare, life-threatening, congenital muscle disease observed mostly in males, which is caused by mutations in MTM1. No therapies are approved for this disease. We aimed to assess the safety and efficacy of resamirigene bilparvovec, which is an adeno-associated viral vector serotype 8 delivering human MTM1.

View Article and Find Full Text PDF

In mammalian skeletal muscle, the propagation of surface membrane depolarization into the interior of the muscle fibre along the transverse (T) tubular network is essential for the synchronized release of calcium from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) in response to the conformational change in the voltage-sensor dihydropyridine receptors. Deficiency in 3-phosphoinositide phosphatase myotubularin (MTM1) has been reported to disrupt T-tubules, resulting in impaired SR calcium release. Here confocal calcium transients recorded in muscle fibres of MTM1-deficient mice were compared with the results from a model where propagation of the depolarization along the T-tubules was modelled mathematically with disruptions in the network assumed to modify the access and transmembrane resistance as well as the capacitance.

View Article and Find Full Text PDF

Bioengineering of viral vectors for therapeutic gene delivery is a pivotal strategy to reduce doses, facilitate manufacturing, and improve efficacy and patient safety. Here, we engineered myotropic adeno-associated viral (AAV) vectors via a semirational, combinatorial approach that merges AAV capsid and peptide library screens. We first identified shuffled AAVs with increased specificity in the murine skeletal muscle, diaphragm, and heart, concurrent with liver detargeting.

View Article and Find Full Text PDF
Article Synopsis
  • Nemaline myopathy (NM) is a muscle disorder characterized by a wide range of clinical severity, largely influenced by specific genetic mutations, with ACTA1 being a key gene linked to severe cases.
  • Researchers studied a cohort of ten families with severe NM, finding that affected individuals often faced significant muscle weakness from birth and many did not survive beyond the early months of life; DNA testing revealed mutations in the ACTA1 gene for all cases.
  • Muscle biopsy analysis showed distinctive NM histopathology, such as abnormal muscle structure and changes in nuclear organization, which were validated by examining similar cases, suggesting a deeper understanding of the disease's genetic and structural complexities.
View Article and Find Full Text PDF

Neuromuscular junctions (NMJs) are highly specialized synapses between lower motor neurons and skeletal muscle fibers that play an essential role in the transmission of molecules from the nervous system to voluntary muscles, leading to contraction. They are affected in many human diseases, including inherited neuromuscular disorders such as Duchenne muscular dystrophy (DMD), congenital myasthenic syndromes (CMS), spinal muscular atrophy (SMA), and amyotrophic lateral sclerosis (ALS). Therefore, monitoring the morphology of neuromuscular junctions and their alterations in disease mouse models represents a valuable tool for pathological studies and preclinical assessment of therapeutic approaches.

View Article and Find Full Text PDF
Article Synopsis
  • * French researchers have made significant progress in therapeutic genome editing, focusing on strategies for blood diseases and muscular dystrophy, as well as enhancing T cell therapy for cancer treatment.
  • * The review addresses challenges such as unwanted editing and cellular toxicity, while suggesting improvements like using recombinant nuclease-based systems to enhance editing precision and safety for clinical use.
View Article and Find Full Text PDF

Multiple clinical trials employing recombinant adeno-associated viral (rAAV) vectors have been initiated for neuromuscular disorders, including Duchenne and limb-girdle muscular dystrophies, spinal muscular atrophy, and recently X-linked myotubular myopathy (XLMTM). Our previous work on a canine model of XLMTM showed that a single rAAV8-cMTM1 systemic infusion corrected structural abnormalities within the muscle and restored contractile function, with affected dogs surviving more than 4 years post injection. This remarkable therapeutic efficacy presents a unique opportunity to identify the downstream molecular drivers of XLMTM pathology and to what extent the whole muscle transcriptome is restored to normal after gene transfer.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion located in the 3' UTR of the DMPK gene. Expanded DMPK transcripts aggregate into nuclear foci and alter the function of RNA-binding proteins, leading to defects in the alternative splicing of numerous pre-mRNAs. To date, there is no curative treatment for DM1.

View Article and Find Full Text PDF

Skeletal muscle deficiency in the 3-phosphoinositide (PtdInsP) phosphatase myotubularin (MTM1) causes myotubular myopathy which is associated with severe depression of voltage-activated sarcoplasmic reticulum Ca release through ryanodine receptors. In the present study we aimed at further understanding how Ca release is altered in MTM1-deficient muscle fibers, at rest and during activation. While in wild-type muscle fibers, SR Ca release exhibits fast stereotyped kinetics of activation and decay throughout the voltage range of activation, Ca release in MTM1-deficient muscle fibers exhibits slow and unconventional kinetics at intermediate voltages, suggestive of partial loss of the normal control of ryanodine receptor Ca channel activity.

View Article and Find Full Text PDF

Objectives: Because X-linked myotubular myopathy (XLMTM) is a rare neuromuscular disease caused by mutations in the gene with a large phenotypic heterogeneity, to ensure clinical trial readiness, it was mandatory to better quantify disease burden and determine best outcome measures.

Methods: We designed an international prospective and longitudinal natural history study in patients with XLMTM and assessed muscle strength and motor and respiratory functions over the first year of follow-up. The humoral immunity against adeno-associated virus serotype 8 was also monitored.

View Article and Find Full Text PDF

X-linked myotubular myopathy (XLMTM) is a severe congenital disorder in male infants that leads to generalized skeletal muscle weakness and is frequently associated with fatal respiratory failure. XLMTM is caused by loss-of-function mutations in the MTM1 gene, which encodes myotubularin, the founder member of a family of 15 homologous proteins in mammals. We recently demonstrated the therapeutic efficacy of intravenous delivery of rAAV vectors expressing MTM1 in animal models of myotubular myopathy.

View Article and Find Full Text PDF

Muscular dystrophies are characterized by weakness and wasting of skeletal muscle tissues. Several drugs targeting the myostatin pathway have been used in clinical trials to increase muscle mass and function but most showed limited efficacy. Here we show that the expression of components of the myostatin signaling pathway is downregulated in muscle wasting or atrophying diseases, with a decrease of myostatin and activin receptor, and an increase of the myostatin antagonist, follistatin.

View Article and Find Full Text PDF

Introduction: X-linked myotubular myopathy (XLMTM), a devastating pediatric disease caused by the absence of the protein myotubularin, results from mutations in the MTM1 gene. While there is no cure for XLMTM, we previously reported effects of MTM1 gene therapy using adeno-associated virus (AAV) vector on muscle weakness and pathology in MTM1-mutant dogs. Here, we followed 2 AAV-infused dogs over 4 years.

View Article and Find Full Text PDF

X-linked myotubular myopathy (XLMTM) results from MTM1 gene mutations and myotubularin deficiency. Most XLMTM patients develop severe muscle weakness leading to respiratory failure and death, typically within 2 years of age. Our objective was to evaluate the efficacy and safety of systemic gene therapy in the p.

View Article and Find Full Text PDF

Mutations in the gene encoding the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for a pediatric disease of skeletal muscle named myotubular myopathy (XLMTM). Muscle fibers from MTM1-deficient mice present defects in excitation-contraction (EC) coupling likely responsible for the disease-associated fatal muscle weakness. However, the mechanism leading to EC coupling failure remains unclear.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA.

View Article and Find Full Text PDF

Myotubular myopathy (MTM) is a devastating pediatric neuromuscular disorder of phosphoinositide (PIP) metabolism resulting from mutations of the PIP phosphatase MTM1 for which there are no treatments. We have previously shown phosphatidylinositol-3-phosphate (PI3P) accumulation in animal models of MTM. Here, we tested the hypothesis that lowering PI3P levels may prevent or reverse the MTM disease process.

View Article and Find Full Text PDF

Phosphoinositides play a key role in the spatiotemporal control of central intracellular processes and several specific kinases and phosphatases regulating the level of these lipids are implicated in human diseases. Myotubularins are a family of 3-phosphatases acting specifically on phosphatidylinositol 3-monophosphate and phosphatidylinositol 3,5 bisphosphate. Members of this family are mutated in genetic diseases including myotubularin 1 (MTM1) and myotubularin-related protein 2 (MTMR2) which mutations are responsible of X-linked centronuclear myopathy and Charcot-Marie-Tooth neuropathy, respectively.

View Article and Find Full Text PDF

X-linked myotubular myopathy (XLMTM) is a devastating, rare, congenital myopathy caused by mutations in the MTM1 gene, resulting in a lack of or dysfunction of the enzyme myotubularin. This leads to severe perinatal weakness and distinctive muscle pathology. It was originally thought that XLMTM was related to developmental arrest in myotube maturation; however, the generation and characterization of several animal models have significantly improved our understanding of clinical and pathological aspects of this disorder.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkviam19vagr4ah95dvunsci6pujobsh3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once