Recently, there has been substantial interest in studying the dynamics of quantum theory beyond that of states, in particular, the dynamics of channels, measurements, and higher-order transformations. Castro-Ruiz et al. pursues this using the process-matrix formalism, together with a definition of the possible dynamics of such process matrices, and focusing especially on the question of evolution of causal structures.
View Article and Find Full Text PDFA well-motivated method for demonstrating that an experiment resists any classical explanation is to show that its statistics violate generalized noncontextuality. We here formulate this problem as a linear program and provide an open-source implementation of it which tests whether or not any given prepare-measure experiment is classically explainable in this sense. The input to the program is simply an arbitrary set of quantum states and an arbitrary set of quantum effects; the program then determines if the Born rule statistics generated by all pairs of these can be explained by a classical (noncontextual) model.
View Article and Find Full Text PDFThe existence of incompatible measurements is often believed to be a feature of quantum theory which signals its inconsistency with any classical worldview. To prove the failure of classicality in the sense of Kochen-Specker noncontextuality, one does indeed require sets of incompatible measurements. However, a more broadly applicable notion of classicality is the existence of a generalized-noncontextual ontological model.
View Article and Find Full Text PDFEven in the presence of conservation laws, one can perform arbitrary transformations on a system if given access to a suitable reference frame, since conserved quantities may be exchanged between the system and the frame. Here we explore whether these quantities can be separated into different parts of the reference frame, with each part acting as a "battery" for a distinct quantity. For systems composed of spin-1/2 particles, we show that the components of angular momentum S_{x}, S_{y}, and S_{z} (noncommuting conserved quantities) may be separated in this way, and also provide several extensions of this result.
View Article and Find Full Text PDFThe study of stronger-than-quantum effects is a fruitful line of research that provides valuable insight into quantum theory. Unfortunately, traditional bipartite steering scenarios can always be explained by quantum theory. Here, we show that, by relaxing this traditional setup, bipartite steering incompatible with quantum theory is possible.
View Article and Find Full Text PDFTo identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2018
We construct a quantum reference frame, which can be used to approximately implement arbitrary unitary transformations on a system in the presence of any number of extensive conserved quantities, by absorbing any back action provided by the conservation laws. Thus, the reference frame at the same time acts as a battery for the conserved quantities. Our construction features a physically intuitive, clear and implementation-friendly realization.
View Article and Find Full Text PDFThe discovery of postquantum nonlocality, i.e., the existence of nonlocal correlations that are stronger than any quantum correlations but nevertheless consistent with the no-signaling principle, has deepened our understanding of the foundations of quantum theory.
View Article and Find Full Text PDF