Publications by authors named "Ana Belen Granado-Serrano"

Ginseng, a popular herbal supplement among athletes, is believed to enhance exercise capacity and performance. This study investigated the short-term effects of Panax ginseng extract (PG) on aerobic capacity, lipid profile, and cytokines. In a 14-day randomized, double-blind trial, male participants took 500 mg of PG daily.

View Article and Find Full Text PDF

This study aimed to determine how the microbiota profile might be predisposed to a better response in blood lipid profiles due to dietary fibre supplementation. A three-arm intervention study that included three different fibre types (mainly insoluble, soluble, and antioxidant fibre) supplemented (19.2 g/day) during 2 months in individuals with hypercholesterolemia was developed.

View Article and Find Full Text PDF

Previous evidence links the formation of extranuclear inclusions of transcription factors, such as ERK, Jun, TDP-43, and REST, with oxidative, endoplasmic-reticulum, proteasomal, and osmotic stress. To further characterize its extranuclear location, we performed a high-content screening based on confocal microscopy and automatized image analyses of an epithelial cell culture treated with hydrogen peroxide, thapsigargin, epoxomicin, or sorbitol at different concentrations and times to recreate the stresses mentioned above. We also performed a subcellular fractionation of the brain from transgenic mice overexpressing the Q331K-mutated TARDBP, and we analyzed the REST-regulated mRNAs.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Ginseng is a widely used ingredient in several traditional Chinese medicine formulation, mainly as a prophylactic and restorative agent. Ginseng's Chinese traditional formulations have shown protective effects against atherosclerosis, suggesting that ginseng may be useful for the treatment of metabolic disorders.

Aim Of The Study: To evaluate whether the supplementation with Panax ginseng (PG) has an effect on blood lipid profile in humans.

View Article and Find Full Text PDF

To further gain insight into the mechanism by which the biopreservative bacterium Pseudomonas graminis CPA-7 develops its antimicrobial activity, we have examined the effect that the prior interaction stablished by this bacterium and two foodborne pathogens on fresh-cut pear, has on their capacity to colonize human epithelial cells (Caco-2 cell line) which is crucial for establishing infection. CPA-7 inhibited the growth of L. monocytogenes and S.

View Article and Find Full Text PDF

Soybean is recognized as rich source of bioactive compounds for the improvement of glucose homeostasis. However, the post-prandial mechanisms of action have not been extensively described. The aim of this study is to determine the changes in glucose homeostasis and related factors after acute intake of a soy beverage.

View Article and Find Full Text PDF

Metabolic flexibility is the capacity of an organism to adequately respond to changes in the environment, such as nutritional input, energetic demand, An important player in the capacity of adaptation through different stages of metabolic demands is the mitochondrion. In this context, mitochondrial dysfunction has been attributed to be the onset and center of many chronic diseases, which are denoted by an inability to adapt fuel preferences and induce mitochondrial morphological changes to respond to metabolic demands, such as mitochondrial number, structure and function. Several nutritional interventions have shown the capacity to induce changes in mitochondrial biogenesis/degradation, oxidative phosphorylation efficiency, mitochondrial membrane composition, electron transfer chain capacity, , in metabolic inflexibility states that may open new target options and mechanisms of action of bioactive compounds for the treatment of metabolic diseases.

View Article and Find Full Text PDF

Background: Docosahexaenoic acid (DHA), a key lipid in nervous system homeostasis, is depleted in the spinal cord of sporadic amyotrophic lateral sclerosis (sALS) patients. However, the basis for such loss was unknown.

Methods: DHA synthetic machinery was evaluated in spinal cord samples from ALS patients and controls by immunohistochemistry and western blot.

View Article and Find Full Text PDF

Introduction: Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a gender bias towards major prevalence in male individuals. Several data suggest the involvement of oxidative stress and mitochondrial dysfunction in its pathogenesis, though differences between genders have not been evaluated. For this reason, we analysed features of mitochondrial oxidative metabolism, as well as mitochondrial chain complex enzyme activities and protein expression, lipid profile, and protein oxidative stress markers, in the Cu,Zn superoxide dismutase with the G93A mutation (hSOD1-G93A)- transgenic mice and Neuro2A(N2A) cells overexpressing hSOD1-G93A.

View Article and Find Full Text PDF

The implication of lipid peroxidation in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) derive from high abundance of peroxidation-prone polyunsaturated fatty acids in central nervous system and its relatively low antioxidant content. In the present work, we evaluated the effect of dietary changes aimed to modify fatty acid tissular composition in survival, disease onset, protein, and DNA oxidative modifications in the hSODG93A transgenic mice, a model of this motor neuron disease. Both survival and clinical evolution is dependent on dietary fatty acid unsaturation and gender, with high unsaturated diet, leading to loss of the disease-sparing effect of feminine gender.

View Article and Find Full Text PDF

Dietary fibre (DF) obtained from Agave tequilana, which is rich in fructans and insoluble DF, and jamaica calyces (Hibiscus sabdariffa), which is rich in DF and phenolic compounds, were assessed as new potential functional ingredients using the hypercholesterolemic animal model. Wistar rats (200-250 g) were divided into 3 groups (n=8) and fed with cholesterol-rich diets supplemented with cellulose (CC, control), agave DF (ADF) or ADF with jamaica calyces (ADF-JC). After consuming the test diets for 5 weeks, weight gain in the ADF-JC group was significantly lower than in the other groups.

View Article and Find Full Text PDF

The dietary flavonoid quercetin is an antioxidant that possesses antiinflammatory and anticarcinogenic properties and may modulate signaling pathways. Inflammation is considered to play a pivotal role in carcinogenesis by triggering activation of transcription factors such as nuclear factor kappa B (NF-κB), functionally dependent on cellular redox status. This study aims to investigate the antiinflammatory effect of quercetin and its role on the NF-κB pathway, and cyclooxygenase-2 (COX-2) and mitogen-activated protein kinases modulation in a human hepatoma cell line (HepG2).

View Article and Find Full Text PDF

Dietary flavonoid quercetin has been suggested as a cancer chemopreventive agent, but the mechanisms of action remain unclear. This study investigated the influence of quercetin on p38-MAPK and the potential regulation of the nuclear transcription factor erythroid-2p45-related factor (Nrf2) and the cellular antioxidant/detoxifying defense system related to glutathione (GSH) by p38 in HepG2 cells. Incubation of HepG2 cells with quercetin at a range of concentrations (5-50μM) for 4 or 18h induced a differential effect on the modulation of p38 and Nrf2 in HepG2 cells, 50μM quercetin showed the highest activation of p38 at 4h of treatment and values of p38 similar to those of control cells after 18 h of incubation, together with the inhibition of Nrf2 at both incubation times.

View Article and Find Full Text PDF

TDP-43 has been implicated in the pathogenesis of amyotrophic lateral sclerosis and other neurodegenerative diseases. Here we demonstrate, using neuronal and spinal cord organotypic culture models, that chronic excitotoxicity, oxidative stress, proteasome dysfunction and endoplasmic reticulum stress mechanistically induce mislocalization, phosphorylation and aggregation of TDP-43. This is compatible with a lack of function of this protein in the nucleus, specially in motor neurons.

View Article and Find Full Text PDF

Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. The aim of this study was to investigate the regulatory effect of quercetin (50 microM) on two main transcription factors (NF-kappa B and AP-1) related to survival/proliferation pathways in a human hepatoma cell line (HepG2) over time. Quercetin induced a significant time-dependent inactivation of the NF-kappa B pathway consistent with a downregulation of the NF-kappa B binding activity (from 15 min onward).

View Article and Find Full Text PDF

Hydroxytyrosol (HTy) is a natural polyphenol abundant in olive oil, which possesses multiple biological actions. Particularly, HTy has cytoprotective activity against oxidative-stress-induced cell damage, but the underlying mechanisms of action remain unclear. Here, we have investigated the molecular mechanism involved in the protection exerted by HTy on tert-butyl hydroperoxide-induced damage in human HepG2 liver cells.

View Article and Find Full Text PDF

The dietary flavonoid epicatechin has been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin on the activity of the main transcription factors (NF-kappaB, activator protein-1 (AP-1) and nuclear transcription factor erythroid 2p45-related factor (Nrf2)) related to antioxidant defence and survival and proliferation pathways in HepG2 cells. Treatment of cells with 10 microm-epicatechin induced the NF-kappaB pathway in a time-dependent manner characterised by increased levels of IkappaB kinase (IKK) and phosphorylated inhibitor of kappaB subunit-alpha (p-IkappaBalpha) and proteolytic degradation of IkappaB, which was consistent with an up-regulation of the NF-kappaB-binding activity.

View Article and Find Full Text PDF

The effects of cocoa feeding against N-nitrosodiethylamine (DEN)-induced liver injury were studied in rats. Animals were divided into five groups. Groups 1 and 2 were fed with standard and cocoa-diet, respectively.

View Article and Find Full Text PDF

Oxidative stress is widely recognized as an important mediator of apoptosis in liver cells and plays a pivotal role in the pathogenesis of several diseases. Cocoa flavonoids have shown a powerful antioxidant activity providing protection against oxidation and helping prevent oxidative stress-related diseases. However, the molecular mechanisms responsible for this protection are not fully understood.

View Article and Find Full Text PDF

Cocoa is a rich source of flavanols and procyanidin oligomers with antioxidative properties, providing protection against oxidation and nitration. The present study investigated the potential protective effect of a polyphenolic extract from cocoa on cell viability and antioxidant defenses of cultured human HepG2 cells submitted to oxidative stress induced by tert-butylhydroperoxide (t-BOOH). Pretreatment of cells with 0.

View Article and Find Full Text PDF

A new soluble cocoa fiber product (SCFP), obtained after enzymatic treatment of cocoa husks, was characterized and its potential health effects studied in an animal model of dietary-induced hypercholesterolemia. The SCFP was rich in soluble dietary fiber (DF) and antioxidant polyphenols. Consumption of a cholesterol-rich diet containing the SCFP as a source of DF resulted in lower food intake and body weight gain in comparison with control groups consuming cholesterol-free or cholesterol-rich diets with cellulose as DF.

View Article and Find Full Text PDF

Polyphenols, such as epicatechin, have been reported to exhibit a wide range of biological activities. The objective of the present study was to investigate the time-dependent regulation by epicatechin of survival/proliferation pathways in HepG2 cells. Treatment of HepG2 cells with 10 micromol/L epicatechin did not result in any cell damage up to 18 h, as evaluated by the lactate dehydrogenase assay.

View Article and Find Full Text PDF

Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. This study was aimed at investigating the time-course regulation effect of quercetin on survival/proliferation pathways in a human hepatoma cell line (HepG2). Quercetin induced a significant time-dependent inactivation of the major survival signaling proteins, i.

View Article and Find Full Text PDF

Dietary polyphenols have been associated with reduced risk of chronic diseases, but the precise molecular mechanisms of protection remain unclear. This work was aimed at studying the effect of (-)-epicatechin (EC) and chlorogenic acid (CGA) on the regulation of apoptotic and survival/proliferation pathways in a human hepatoma cell line (HepG2). EC or CGA treatment for 18 h had a slight effect on cell viability and decreased reactive oxygen species formation, and EC alone promoted cell proliferation, whereas CGA increased glutathione levels.

View Article and Find Full Text PDF

Dietary polyphenols have been associated with the reduced risk of chronic diseases such as cancer, but the precise underlying mechanism of protection remains unclear. The aim of this study was to investigate the effect of quercetin on the activation of the apoptotic pathway in a human hepatoma cell line (HepG2). Treatment of cells for 18 h with quercetin induced cell death in a dose-dependent manner; however, a shorter treatment (4 h) had no effect on cell viability.

View Article and Find Full Text PDF