Purpose: Hepatocellular carcinoma is the most frequent liver cancer and constitutes one of the main causes of cancer mortality. The combination of targeted therapy drugs, such as selumetinib and perifosine that inhibit cell signaling pathways involved in cell survival and proliferation, with the expression of tumor suppressor transgenes, such as PTEN, may result in an efficient therapeutic approach against HCC. Thus, the main objective of this work was to develop a new lipid-polymer hybrid nanosystem (HNP), composed of a PLGA core coated with a pH-sensitive lipid bilayer functionalized with the targeting ligand GalNAc, in order to specifically and efficiently deliver this novel combination of therapeutic agents in HCC cells.
View Article and Find Full Text PDFHematological neoplasias are among the most common cancers worldwide, and the number of new cases has been on the rise since 1990, reaching 1 [...
View Article and Find Full Text PDFThe role of metalloproteinases (MMPs) in hematological malignancies, like acute myeloid leukemia (AML), myelodysplastic neoplasms (MDS), and multiple myeloma (MM), is well-documented, and these pathologies remain with poor outcomes despite treatment advancements. In this study, we investigated the effects of batimastat (BB-94), an MMP inhibitor (MMPi), in single-administration and daily administration schemes in AML, MDS, and MM cell lines. We used four hematologic neoplasia cell lines: the HL-60 and NB-4 cells as AML models, the F36-P cells as an MDS model, and the H929 cells as a model of MM.
View Article and Find Full Text PDFIntroduction: In monoclonal B cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL), the expansion of malignant B cells disrupts the normal homeostasis and interactions between B cells and T cells, leading to immune dysregulation. CD20+ T cells are a subpopulation of T cells that appear to be involved in autoimmune diseases and cancer.
Methods: Here, we quantified and phenotypically characterized CD20+ T cells from MBL subjects and CLL patients using flow cytometry and correlated our findings with the B-cell receptor mutational status and other features of the disease.
Multiple myeloma (MM) is a very heterogeneous disease with multiple symptoms and clinical manifestations. MM affects mainly elderly patients and is difficult to manage in the presence of comorbidities, polypharmacy, frailty and adverse events of disease-targeted drugs. The rapid changes in MM treatment resulting from constant innovations in this area, together with the introduction of numerous new drugs with distinct mechanisms of action and toxicity profiles, have led to an increased complexity in the therapeutic decision-making and patient management processes.
View Article and Find Full Text PDFReversine is a purine derivative that has been investigated with regard to its biological effects, such as its anticancer properties and, mostly, its ability to induce the dedifferentiation of adult cells, increasing their plasticity. The obtained dedifferentiated cells have a high potential for use in regenerative procedures, such as regenerative dentistry (RD). Instead of replacing the lost or damaged oral tissues with synthetic materials, RD uses stem cells combined with matrices and an appropriate microenvironment to achieve tissue regeneration.
View Article and Find Full Text PDFThe non-homologous end joining pathway is vital for repairing DNA double-strand breaks (DSB), with DNA-dependent protein kinase (DNA-PK) playing a critical role. Altered DNA damage response (DDR) in chronic (CML) and acute myeloid leukemia (AML) offers potential therapeutic opportunities. We studied the therapeutic potential of AZD-7648 (DNA-PK inhibitor) in CML and AML cell lines.
View Article and Find Full Text PDFIn assessing and managing pain, when obtaining a self-report is impossible, therapeutic decision-making becomes more challenging. This study aimed to investigate whether monocytes and some membrane monocyte proteins, identified as a cluster of differentiation (CD), could be potential non-invasive peripheral biomarkers in identifying and characterizing pain in patients with severe dementia. We used 53 blood samples from non-oncological palliative patients, 44 patients with pain (38 of whom had dementia) and 0 without pain or dementia (controls).
View Article and Find Full Text PDFLymphoid malignancies are a group of highly heterogeneous diseases frequently associated with constitutive activation of the nuclear factor kappa B (NF-κB) signaling pathway. Parthenolide is a natural compound used to treat migraines and arthritis and found to act as a potent NF-κB signaling inhibitor. This study evaluated in vitro parthenolide efficacy in lymphoid neoplasms.
View Article and Find Full Text PDFThe trace element zinc (Zn) displays a wide range of biological functions. Zn ions control intercellular communication and intracellular events that maintain normal physiological processes. These effects are achieved through the modulation of several Zn-dependent proteins, including transcription factors and enzymes of key cell signaling pathways, namely those involved in proliferation, apoptosis, and antioxidant defenses.
View Article and Find Full Text PDFHeat shock protein 90 (HSP90) facilitates folding and stability and prevents the degradation of multiple client proteins. One of these HSP90 clients is BCR-ABL, the oncoprotein characteristic of chronic myeloid leukemia (CML) and the target of tyrosine kinase inhibitors, such as imatinib. Alvespimycin is an HSP90 inhibitor with better pharmacokinetic properties and fewer side effects than other similar drugs, but its role in overcoming imatinib resistance is not yet clarified.
View Article and Find Full Text PDFAcute lymphoblastic leukemia (ALL) is one of the most common hematological malignancies at pediatric ages and is characterized by different chromosomal rearrangements and genetic abnormalities involved in the differentiation and proliferation of lymphoid precursor cells. Brusatol is a quassinoid plant extract extensively studied due to its antineoplastic effect through global protein synthesis and nuclear factor erythroid 2-related factor-2 (NRF2) signaling inhibition. NRF2 is the main regulator of cellular antioxidant response and reactive oxygen species (ROS), which plays an important role in oxidative stress regulation.
View Article and Find Full Text PDFSolute carrier (SLC) and ATP-binding cassette (ABC) transporters comprise a variety of proteins expressed on cell membranes responsible for intrusion or extrusion of substrates, respectively, including nutrients, xenobiotics, and chemotherapeutic agents. These transporters mediate the cellular disposition of tyrosine kinase inhibitors (TKIs), and their genetic variants could affect its function, potentially predisposing patients to chronic myeloid leukaemia (CML) and modulating treatment response. We explored the impact of genetic variability (single nucleotide variants-SNVs) of drug transporter genes (, , , and ) on CML susceptibility, drug response, and mutation status.
View Article and Find Full Text PDFThe deregulation of apoptosis is involved in the development of several pathologies, and recent evidence suggests that apoptosis may be involved in chronic pain, namely in neuropathic pain. Neuropathic pain is a chronic pain state caused by primary damage or dysfunction of the nervous system; however, the details of the molecular mechanisms have not yet been fully elucidated. Recently, it was found that nerve endings contain transient receptor potential (TRP) channels that sense and detect signals released by injured tissues and respond to these damage signals.
View Article and Find Full Text PDFMultidrug resistance (MDR) development has emerged as a complication that compromises the success of several chemotherapeutic agents. In chronic myeloid leukemia (CML), imatinib resistance has been associated with changes in and intracellular drug concentration, controlled by SLC and ABC transporters. We evaluate the therapeutic potential of a P-glycoprotein and BCRP inhibitor, elacridar, in sensitive (K562 and LAMA-84) and imatinib-resistant (K562-RC and K562-RD) CML cell lines as monotherapy and combined with imatinib.
View Article and Find Full Text PDFChiral alkylidene-β-lactams and alkylidene-γ-lactams were synthesized and screened for their in vitro activity against four human cancer cell lines (melanoma, esophageal, lung and fibrosarcoma carcinoma). Alkylidene-β-lactams were synthesized via Wittig reaction of diverse phosphorus ylides with benzhydryl 6-oxopenicillanate, derived from 6-aminopenicillanic acid. Moreover, novel chiral alkylidene-γ-lactams were synthesized through a multistep strategy starting from a chiral substrate (d-penicillamine).
View Article and Find Full Text PDFGenomic instability is prevented by the DNA damage response (DDR). Micronutrients, like zinc (Zn), are cofactors of DDR proteins, and micronutrient deficiencies have been related to increased cancer risk. Acute myeloid leukemia (AML) patients commonly present Zn deficiency.
View Article and Find Full Text PDFBreast cancer (BC) is a malignant neoplasia with the highest incidence and mortality rates in women worldwide. Currently, therapies include surgery, radiotherapy, and chemotherapy, including targeted therapies in some cases. However, treatments are often associated with serious adverse effects.
View Article and Find Full Text PDFDespite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options.
View Article and Find Full Text PDFHypoxia, a hallmark of solid tumors, determines the selection of invasive and aggressive malignant clones displaying resistance to radiotherapy, conventional chemotherapy or targeted therapy. The recent introduction of immunotherapy, based on immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cells, has markedly transformed the prognosis in some tumors but also revealed the existence of intrinsic or acquired drug resistance. In the current review we highlight hypoxia as a culprit of immunotherapy failure.
View Article and Find Full Text PDFThis study aimed to assess the cytotoxicity of commercially available adhesive strategies-etch-and-rinse (Adper Scotchbond 1 XT, 3M ESPE, St. Paul, MN, USA, SB1), self-etch (Clearfil SE Bond 2, Kuraray Noritake Dental Inc., Tokyo, Japan, CSE), and universal (Scotchbond Universal, 3M Deutschland GmbH, Neuss, Germany, SBU).
View Article and Find Full Text PDFFront Oncol
October 2021
The HCDR3 sequences of the B-cell receptor (BCR) undergo constraints in length, amino acid use, and charge during maturation of B-cell precursors and after antigen encounter, leading to BCR and antibodies with high affinity to specific antigens. Chronic lymphocytic leukemia consists of an expansion of B-cells with a mixed immature and "antigen-experienced" phenotype, with either a mutated (M-CLL) or unmutated (U-CLL) tumor BCR, associated with distinct patient outcomes. Here, we investigated the hydropathy index of the BCR of 138 CLL patients and its association with the IGHV mutational status and patient outcome.
View Article and Find Full Text PDFResistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity.
View Article and Find Full Text PDFBiomaterials contact directly or indirectly with the human tissues, making it important to evaluate its cytotoxicity. This evaluation can be performed by several methods, but a high discrepancy exists between the approaches used, compromising the reproducibility and the comparison among the obtained results. In this paper, we propose a protocol to evaluate biomaterials cytotoxicity using soluble extracts, which we use for dental biomaterials.
View Article and Find Full Text PDF