Publications by authors named "Ana B Rios- Miguel"

Aquatic ecosystems are large contributors to global methane (CH4) emissions. Eutrophication significantly enhances CH4-production as it stimulates methanogenesis. Mitigation measures aimed at reducing eutrophication, such as the addition of metal salts to immobilize phosphate (PO43-), are now common practice.

View Article and Find Full Text PDF

Organic micropollutants (OMPs) consist of widely used chemicals such as pharmaceuticals and pesticides that can persist in surface and groundwaters at low concentrations (ng/L to μg/L) for a long time. The presence of OMPs in water can disrupt aquatic ecosystems and threaten the quality of drinking water sources. Wastewater treatment plants (WWTPs) rely on microorganisms to remove major nutrients from water, but their effectiveness at removing OMPs varies.

View Article and Find Full Text PDF

Benzimidazole fungicides are frequently detected in aquatic environments and pose a serious health risk. Here, we investigated the metabolic capacity of the recently discovered complete ammonia-oxidizing (comammox) Nitrospira inopinata and kreftii to transform a representative set of benzimidazole fungicides (i.e.

View Article and Find Full Text PDF

Pharmaceuticals are relatively new to nature and often not completely removed in wastewater treatment plants (WWTPs). Consequently, these micropollutants end up in water bodies all around the world posing a great environmental risk. One exception to this recalcitrant conversion is paracetamol, whose full degradation has been linked to several microorganisms.

View Article and Find Full Text PDF

Preserving human and environmental health requires anthropogenic pollutants to be biologically degradable. Depending on concentration, both nutrients and pollutants induce and activate metabolic capacity in the endemic bacterial consortium, which in turn aids their degradation. Knowledge on such 'acclimation' is rarely implemented in risk assessment cost-effectively.

View Article and Find Full Text PDF

Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen Genome-scale gene expression data of strain NewHG (sigB) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking , or both.

View Article and Find Full Text PDF
Article Synopsis
  • Pharmaceuticals can end up in water through wastewater treatment plants, and figuring out how they break down is important to keep the environment safe.
  • This study tested how well nine different medicines were broken down by activated sludge during summer and winter, using two different concentration levels of the medicines.
  • Results showed that some medicines broke down better at higher concentrations, and that sometimes the amount of medicine matters more than the type of bacteria involved in breaking them down.
View Article and Find Full Text PDF

Pharmaceuticals are often not fully removed in wastewater treatment plants (WWTPs) and are thus being detected at trace levels in water bodies all over the world posing a risk to numerous organisms. These organic micropollutants (OMPs) reach WWTPs at concentrations sometimes too low to serve as growth substrate for microorganisms; thus, co-metabolism is thought to be the main conversion mechanism. In this study, the microbial removal of six pharmaceuticals was investigated in a membrane bioreactor at increasing concentrations (4-800 nM) of the compounds and using three different hydraulic retention times (HRT; 1, 3.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) are crucial for producing clean effluents from polluting sources such as hospitals, industries, and municipalities. In recent decades, many new organic compounds have ended up in surface waters in concentrations that, while very low, cause (chronic) toxicity to countless organisms. These organic micropollutants (OMPs) are usually quite recalcitrant and not sufficiently removed during wastewater treatment.

View Article and Find Full Text PDF

Cellular metabolism can influence host immune responses to Mycobacterium tuberculosis. Using a systems biology approach, differential expression of 292 metabolic genes involved in glycolysis, glutathione, pyrimidine, and inositol phosphate pathways was evident at the site of a human tuberculin skin test challenge in patients with active tuberculosis infection. For 28 metabolic genes, we identified single nucleotide polymorphisms that were trans-acting for in vitro cytokine responses to M.

View Article and Find Full Text PDF