Publications by authors named "Ana Azevedo-Pouly"

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a vital role in DNA damage repair and lymphocyte function, presenting a significant target in cancer and immune diseases. Current DNA-PKcs inhibitors are undergoing Phase I/II trials as adjuncts to radiotherapy and chemotherapy in cancer. Nevertheless, clinical utility is limited by suboptimal bioavailability.

View Article and Find Full Text PDF

Proper maintenance of mature cellular phenotypes is essential for stable physiology, suppression of disease states, and resistance to oncogenic transformation. We describe the transcriptional regulatory roles of four key DNA-binding transcription factors (Ptf1a, Nr5a2, Foxa2 and Gata4) that sit at the top of a regulatory hierarchy controlling all aspects of a highly differentiated cell-type-the mature pancreatic acinar cell (PAC). Selective inactivation of Ptf1a, Nr5a2, Foxa2 and Gata4 individually in mouse adult PACs rapidly altered the transcriptome and differentiation status of PACs.

View Article and Find Full Text PDF

Modulation of T cell activity is an effective strategy for the treatment of autoimmune diseases, immune-related disorders and cancer. This highlights a critical need for the identification of proteins that regulate T cell function. The kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is emerging as a potent regulator of the immune system, spurring interest in its use as a therapeutic target.

View Article and Find Full Text PDF

Preclinical and clinical findings suggest sexual dimorphism in cardiotoxicity induced by a chemotherapeutic drug, doxorubicin (DOX). However, molecular alterations leading to sex-related differential vulnerability of heart to DOX toxicity are not fully explored. In the present study, RNA sequencing in hearts of B6C3F mice indicated more differentially expressed genes in males than females (224 vs.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers tested a new pStat3 inhibitor (LLL12B) and an HDAC inhibitor (trichostatin A) on mouse pancreatic organoid cultures, finding that both inhibited ADM and even reversed it in some cases.
  • * The study indicates that targeting pStat3 and HDAC can potentially be a therapeutic approach to stop the abnormal transformation of acinar cells, with promising results seen in both mouse and human cell cultures.
View Article and Find Full Text PDF

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is known primarily for its function in DNA double-stranded break repair and nonhomologous end joining (NHEJ). However, DNA-PKcs also has a critical yet undefined role in immunity impacting both myeloid and lymphoid cell lineages spurring interest in targeting DNA-PKcs for therapeutic strategies in immune-related diseases. To gain insight into the function of DNA-PKcs within immune cells, we performed a quantitative phosphoproteomic screen in T cells to identify phosphorylation targets of DNA-PKcs.

View Article and Find Full Text PDF

PDA is a major cause of US cancer-related deaths. Oncogenic Kras presents in 90% of human PDAs. Kras mutations occur early in pre-neoplastic lesions but are insufficient to cause PDA.

View Article and Find Full Text PDF

The pancreatic acinar-enriched miR-216a, miR-216b and miR-217 are encoded within the miR217HG. These miRNAs have been purported to play a tumor suppressive role as their expression is reduced in both human and mouse pancreatic ductal adenocarcinoma (PDAC). To examine this possibility, we generated individual, germline knockout (KO) mice of miR-216a, miR-216b or miR-217.

View Article and Find Full Text PDF

A gene array was used to profile the expression of 22,875 long non-coding RNAs (lncRNAs) and a large number of protein coding genes in 47 specimens of pancreatic ductal adenocarcinoma (PDAC), adjacent benign pancreas and the pancreas from patients without pancreatic disease. Of the lncRNAs profiled, the expression of 126 were significantly increased and 260 were decreased in the tumors ( < 0.05, 2-fold).

View Article and Find Full Text PDF

Extracellular vesicles (EVs) hold great potential as novel systems for nucleic acid delivery due to their natural composition. Our goal was to load EVs with microRNA that are synthesized by the cells that produce the EVs. HEK293T cells were engineered to produce EVs expressing a lysosomal associated membrane, Lamp2a fusion protein.

View Article and Find Full Text PDF

Maintenance of cell type identity is crucial for health, yet little is known of the regulation that sustains the long-term stability of differentiated phenotypes. To investigate the roles that key transcriptional regulators play in adult differentiated cells, we examined the effects of depletion of the developmental master regulator PTF1A on the specialized phenotype of the adult pancreatic acinar cell in vivo Transcriptome sequencing and chromatin immunoprecipitation sequencing results showed that PTF1A maintains the expression of genes for all cellular processes dedicated to the production of the secretory digestive enzymes, a highly attuned surveillance of unfolded proteins, and a heightened unfolded protein response (UPR). Control by PTF1A is direct on target genes and indirect through a ten-member transcription factor network.

View Article and Find Full Text PDF

Much remains unknown regarding the regulatory networks formed by transcription factors in mature, differentiated mammalian cells , despite many studies of individual DNA-binding transcription factors. We report a constellation of feed-forward loops formed by the pancreatic transcription factors MIST1 and PTF1 that govern the differentiated phenotype of the adult pancreatic acinar cell. PTF1 is an atypical basic helix-loop-helix transcription factor complex of pancreatic acinar cells and is critical to acinar cell fate specification and differentiation.

View Article and Find Full Text PDF

Transcriptional networks that govern secretory cell specialization, including instructing cells to develop a unique cytoarchitecture, amass extensive protein synthesis machinery, and be embodied to respond to endoplasmic reticulum (ER) stress, remain largely uncharacterized. In this study, we discovered that the secretory cell transcription factor MIST1 (), previously shown to be essential for cytoskeletal organization and secretory activity, also functions as a potent ER stress-inducible transcriptional regulator. Genome-wide DNA binding studies, coupled with genetic mouse models, revealed MIST1 gene targets that function along the entire breadth of the protein synthesis, processing, transport, and exocytosis networks.

View Article and Find Full Text PDF

Mice harboring a G12D activating Kras mutation are among the most heavily studied models in the field of pancreatic adenocarcinoma (PDAC) research. miRNAs are differentially expressed in PDAC from patients and mouse models of PDAC. To better understand the relationship that Kras activation has on miRNA expression, we profiled the expression of 629 miRNAs in RNA isolated from the pancreas of control, young, and old P48;LSL-KRAS as well as PDX-1-Cre;LSL-KRAS mice.

View Article and Find Full Text PDF

Transcribed ultraconserved regions (T-UCRs) are a class of non-coding RNAs with 100% sequence conservation among human, rat and mouse genomes. T-UCRs are differentially expressed in several cancers, however their expression in pancreatic adenocarcinoma (PDAC) has not been studied. We used a qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens, pancreatic cancer cell lines, during experimental pancreatic desmoplasia and in the pancreases of P48Cre/wt; KrasLSL-G12D/wt mice.

View Article and Find Full Text PDF

Isolation of high-quality RNA from ribonuclease-rich tissue such as mouse pancreas presents a challenge. As a primary function of the pancreas is to aid in digestion, mouse pancreas may contain as much a 75 mg of ribonuclease. We report modifications of standard phenol/guanidine thiocyanate lysis reagent protocols to isolate RNA from mouse pancreas.

View Article and Find Full Text PDF

Identifying targets of dysregulated microRNAs (miRNAs) will enhance our understanding of how altered miRNA expression contributes to the malignant phenotype of breast cancer. The expression of miR-205 was reduced in four breast cancer cell lines compared to the normal-like epithelial cell line MCF10A and in tumor and metastatic tissues compared to adjacent benign breast tissue. Two predicted binding sites for miR-205 were identified in the 3' untranslated region of the high mobility group box 3 gene, HMGB3.

View Article and Find Full Text PDF

MicroRNA are small noncoding RNAs that translationally repress their target messenger RNAs. Many microRNAs are expressed at reduced levels in tumors. microRNAs with reduced expression in cancer often regulate oncogenes, resulting in enhanced tumor growth.

View Article and Find Full Text PDF