Publications by authors named "Ana Arribas-Gil"

Current alignment-based methods for classification in geometric morphometrics do not generally address the classification of new individuals that were not part of the study sample. However, in the context of infant and child nutritional assessment from body shape images this is a relevant problem. In this setting, classification rules obtained on the shape space from a reference sample cannot be used on out-of-sample individuals in a straightforward way.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) is a non-invasive technique that facilitates the study of brain activity by measuring changes in blood flow. Brain activity signals can be recorded during the alternate performance of given tasks, that is, task fMRI (tfMRI), or during resting-state, that is, resting-state fMRI (rsfMRI), as a measure of baseline brain activity. This contributes to the understanding of how the human brain is organized in functionally distinct subdivisions.

View Article and Find Full Text PDF

Nowadays, across the most important problems faced by health centers are those caused by the existence of patients who do not attend their appointments. Among others, these patients cause loss of revenue to the health centers and increase the patients' waiting list. In order to tackle these problems, several scheduling systems have been developed.

View Article and Find Full Text PDF

We propose an approach for multiple sequence alignment (MSA) derived from the dynamic time warping viewpoint and recent techniques of curve synchronization developed in the context of functional data analysis. Starting from pairwise alignments of all the sequences (viewed as paths in a certain space), we construct a median path that represents the MSA we are looking for. We establish a proof of concept that our method could be an interesting ingredient to include into refined MSA techniques.

View Article and Find Full Text PDF

We propose a semiparametric nonlinear mixed-effects model (SNMM) using penalized splines to classify longitudinal data and improve the prediction of a binary outcome. The work is motivated by a study in which different hormone levels were measured during the early stages of pregnancy, and the challenge is using this information to predict normal versus abnormal pregnancy outcomes. The aim of this paper is to compare models and estimation strategies on the basis of alternative formulations of SNMMs depending on the characteristics of the data set under consideration.

View Article and Find Full Text PDF

Joint models for a wide class of response variables and longitudinal measurements consist on a mixed-effects model to fit longitudinal trajectories whose random effects enter as covariates in a generalized linear model for the primary response. They provide a useful way to assess association between these two kinds of data, which in clinical studies are often collected jointly on a series of individuals and may help understanding, for instance, the mechanisms of recovery of a certain disease or the efficacy of a given therapy. When a nonlinear mixed-effects model is used to fit the longitudinal trajectories, the existing estimation strategies based on likelihood approximations have been shown to exhibit some computational efficiency problems (De la Cruz et al.

View Article and Find Full Text PDF

We propose a classification method for longitudinal data. The Bayes classifier is classically used to determine a classification rule where the underlying density in each class needs to be well modeled and estimated. This work is motivated by a real dataset of hormone levels measured at the early stages of pregnancy that can be used to predict normal versus abnormal pregnancy outcomes.

View Article and Find Full Text PDF

We propose a new method to visualize and detect shape outliers in samples of curves. In functional data analysis, we observe curves defined over a given real interval and shape outliers may be defined as those curves that exhibit a different shape from the rest of the sample. Whereas magnitude outliers, that is, curves that lie outside the range of the majority of the data, are in general easy to identify, shape outliers are often masked among the rest of the curves and thus difficult to detect.

View Article and Find Full Text PDF

This article proposes a novel approach to statistical alignment of nucleotide sequences by introducing a context dependent structure on the substitution process in the underlying evolutionary model. We propose to estimate alignments and context dependent mutation rates relying on the observation of two homologous sequences. The procedure is based on a generalized pair-hidden Markov structure, where conditional on the alignment path, the nucleotide sequences follow a Markov distribution.

View Article and Find Full Text PDF

In functional data analysis, the time warping model aims at representing a set of curves exhibiting phase and amplitude variation with respect to a common continuous process. Many biological processes, when observed across the time among different individuals, fit into this concept. The observed curves are modeled as the composition of an "amplitude process," which governs the common behavior, and a "warping process" that induces time distortion among the individuals.

View Article and Find Full Text PDF

In this work we deal with parameter estimation in a latent variable model, namely the multiple-hidden i.i.d.

View Article and Find Full Text PDF

We present a stochastic sequence evolution model to obtain alignments and estimate mutation rates between two homologous sequences. The model allows two possible evolutionary behaviors along a DNA sequence in order to determine conserved regions and take its heterogeneity into account. In our model, the sequence is divided into slow and fast evolution regions.

View Article and Find Full Text PDF