Publications by authors named "Ana Angulo"

Interferons (IFN) are crucial antiviral and immunomodulatory cytokines that exert their function through the regulation of a myriad of genes, many of which are not yet characterized. Here, we reveal that lipin-2, a phosphatidic acid phosphatase whose mutations produce an autoinflammatory syndrome known as Majeed syndrome in humans, is regulated by IFN in a STAT-1-dependent manner. Lipin-2 inhibits viral replication both in vitro and in vivo.

View Article and Find Full Text PDF

Hemosiderosis consists of an iron deposit in tissues, which does not cause organic damage to them. However, in the case of the skin, being an organ exposed to sight, siderosis can produce a brownish coloration that is aesthetically discomforting for the individual. Most cutaneous sideroses are because of venous insufficiency with hemorrhagic extravasation.

View Article and Find Full Text PDF

Human activities such as habitat degradation and fragmentation threaten biodiversity in Neotropical areas. This work proposes an analytical methodology to identify natural areas in Central America with anthropogenic impact, analyzing the presence of antimicrobial resistance genes (ARGs) in accordance with their theoretical relationship with human-related activities. Sixteen ARGs were quantified in feces of different individuals of 13 jaguars (Panthera onca) and 13 pumas (Puma concolor) in three conservation areas in Costa Rica by real-time PCR.

View Article and Find Full Text PDF

The ability of antibodies to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important correlate of protection. For routine evaluation of protection, however, a simple and cost-efficient anti-SARS-CoV-2 serological assay predictive of serum neutralizing activity is needed. We analyzed clinical epidemiological data and blood samples from two cohorts of health care workers in Barcelona and Munich to compare several immunological readouts for evaluating antibody levels that could be surrogates of neutralizing activity.

View Article and Find Full Text PDF

Large double-stranded DNA viruses deploy multiple strategies to subvert host immune defenses. Some of these tactics are mediated by viral gene products acquired by horizontal gene transfer from the corresponding hosts and shaped throughout evolution. The programmed death-1 (PD-1) receptor and its ligands, PD-L1 and PD-L2, play a pivotal role attenuating T-cell responses and regulating immune tolerance.

View Article and Find Full Text PDF

The rapid spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerging variants raises concerns about their capacity to evade immune protection provided by natural infection or vaccination. The receptor-binding domain (RBD) of the viral spike protein is the major target of neutralizing antibodies, and viral variants accumulate mutations in this region. In this study, we determined the antibody neutralization capacity against the RBD of SARS-CoV-2 variants Alpha (B.

View Article and Find Full Text PDF

Background: Two doses of mRNA vaccination have shown >94% efficacy at preventing COVID-19 mostly in naïve adults, but it is not clear if the second dose is needed to maximize effectiveness in those previously exposed to SARS-CoV-2 and what other factors affect responsiveness.

Methods: We measured IgA, IgG and IgM levels against SARS-CoV-2 spike (S) and nucleocapsid (N) antigens from the wild-type and S from the Alpha, Beta and Gamma variants of concern, after BNT162b2 (Pfizer/BioNTech) or mRNA-1273 (Moderna) vaccination in a cohort of health care workers (N=578). Neutralizing capacity and antibody avidity were evaluated.

View Article and Find Full Text PDF

Unraveling the long-term kinetics of antibodies to SARS-CoV-2 and the individual characteristics influencing it, including the impact of pre-existing antibodies to human coronaviruses causing common cold (HCoVs), is essential to understand protective immunity to COVID-19 and devise effective surveillance strategies. IgM, IgA and IgG levels against six SARS-CoV-2 antigens and the nucleocapsid antigen of the four HCoV (229E, NL63, OC43 and HKU1) were quantified by Luminex, and antibody neutralization capacity was assessed by flow cytometry, in a cohort of health care workers followed up to 7 months (N = 578). Seroprevalence increases over time from 13.

View Article and Find Full Text PDF

Viral infections are controlled, and very often cleared, by activated T lymphocytes. The inducible co-stimulator (ICOS) mediates its functions by binding to its ligand ICOSL, enhancing T-cell activation and optimal germinal center (GC) formation. Here, we show that ICOSL is heavily downmodulated during infection of antigen-presenting cells by different herpesviruses.

View Article and Find Full Text PDF

The genesis of gene families by the capture of host genes and their subsequent duplication is a crucial process in the evolution of large DNA viruses. CD48 is a cell surface molecule that interacts via its N-terminal immunoglobulin (Ig) domain with the cell surface receptor 2B4 (CD244), regulating leukocyte cytotoxicity. We previously reported the presence of five CD48 homologs (vCD48s) in two related cytomegaloviruses, and demonstrated that one of them, A43, binds 2B4 and acts as a soluble CD48 decoy receptor impairing NK cell function.

View Article and Find Full Text PDF

Cytomegaloviruses (CMVs) are ubiquitous pathogens known to employ numerous immunoevasive strategies that significantly impair the ability of the immune system to eliminate the infected cells. Here, we report that the single mouse CMV (MCMV) protein, m154, downregulates multiple surface molecules involved in the activation and costimulation of the immune cells. We demonstrate that m154 uses its cytoplasmic tail motif, DD, to interfere with the adaptor protein-1 (AP-1) complex, implicated in intracellular protein sorting and packaging.

View Article and Find Full Text PDF

Type I interferon (IFN-I) provides effective antiviral immunity but can exacerbate harmful inflammatory reactions and cause hematopoietic stem cell (HSC) exhaustion; therefore, IFN-I expression must be tightly controlled. While signaling mechanisms that limit IFN-I induction and function have been extensively studied, less is known about transcriptional repressors acting directly on IFN-I regulatory regions. We show that NFAT5, an activator of macrophage pro-inflammatory responses, represses Toll-like receptor 3 and virus-induced expression of IFN-I in macrophages and dendritic cells.

View Article and Find Full Text PDF

Throughout evolution, cytomegaloviruses (CMVs) have been capturing genes from their hosts, employing the derived proteins to evade host immune defenses. We have recently reported the presence of a number of CD48 homologs (vCD48s) encoded by different pathogenic viruses, including several CMVs. However, their properties and biological relevance remain as yet unexplored.

View Article and Find Full Text PDF

The signaling lymphocytic activation molecule family (SLAMF) of receptors plays crucial roles during innate and adaptive immune responses. The SLAMF member CD229 (Ly9, SLAMF3) is a homophilic receptor predominantly expressed on the surface of B and T cells. CD229 acts as a cosignaling molecule, regulating lymphocyte homoeostasis and activation.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) persistence in infected individuals relies on a plethora of mechanisms to efficiently reduce host immune responses. To that end, HCMV uses a variety of gene products, some of which have not been identified yet. Here we characterized the gene, which consists of two exons, sharing the first with the HCMV RL11 family member UL8 is a transmembrane protein with an N-terminal immunoglobulin (Ig)-like domain in common with UL7 but with an extended stalk and a distinctive cytoplasmic tail.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) infection promotes the differentiation and persistent expansion of a mature NK cell subset, which displays high surface levels of the activating CD94/NKG2C NK cell receptor, together with additional distinctive phenotypic and functional features. The mechanisms underlying the development of adaptive NK cells remain uncertain but some observations support the involvement of a cognate interaction of CD94/NKG2C with ligand(s) displayed by HCMV-infected cells. To approach this issue, the heterodimer and its adaptor (DAP12) were expressed in the human Jurkat leukemia T cell line; signaling was detected by transfection of a reporter plasmid encoding for Luciferase (Luc) under NFAT/AP1-dependent control.

View Article and Find Full Text PDF

Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored.

View Article and Find Full Text PDF

Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes.

View Article and Find Full Text PDF

Since the discovery of the high abundance of Alu elements in the human genome, the interest for the functional significance of these retrotransposons has been increasing. Primate Alu and rodent Alu-like elements are retrotransposed by a mechanism driven by the LINE1 (L1) encoded proteins, the same machinery that generates the L1 repeats, the processed pseudogenes (PPs), and other retroelements. Apart from free Alu RNAs, Alus are also transcribed and retrotranscribed as part of cellular gene transcripts, generally embedded inside 3' untranslated regions (UTRs).

View Article and Find Full Text PDF

In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance.

View Article and Find Full Text PDF

Unlabelled: Throughout evolution, large DNA viruses have been usurping genes from their hosts to equip themselves with proteins that restrain host immune defenses. Signaling lymphocytic activation molecule (SLAM) family (SLAMF) receptors are involved in the regulation of both innate and adaptive immunity, which occurs upon engagement with their ligands via homotypic or heterotypic interactions. Here we report a total of seven SLAMF genes encoded by the genomes of two cytomegalovirus (CMV) species, squirrel monkey CMV (SMCMV) and owl monkey CMV (OMCMV), that infect New World monkeys.

View Article and Find Full Text PDF

Viral engagement with macrophages activates Toll-Like-Receptors (TLRs) and viruses must contend with the ensuing inflammatory responses to successfully complete their replication cycle. To date, known counter-strategies involve the use of viral-encoded proteins that often employ mimicry mechanisms to block or redirect the host response to benefit the virus. Whether viral regulatory DNA sequences provide an opportunistic strategy by which viral enhancer elements functionally mimic innate immune enhancers is unknown.

View Article and Find Full Text PDF

Homeostasis underpins at a systems level the regulatory control of immunity and metabolism. While physiologically these systems are often viewed as independent, there is increasing evidence showing a tight coupling between immune and metabolic functions. Critically upon infection, the homeostatic regulation for both immune and metabolic pathways is altered yet these changes are often investigated in isolation.

View Article and Find Full Text PDF

Most studies on aging and marathon have analyzed elite marathoners, yet the latter only represent a very small fraction of all marathon participants. In addition, analysis of variance or unpaired Student t tests are frequently used to compare mean performance times across age groups. In this report the authors propose an alternative methodology to determine the impact of aging on marathon performance in both nonelite and elite marathoners participating in the New York City Marathon.

View Article and Find Full Text PDF

Receptors of the signalling lymphocyte-activation molecules (SLAM) family are involved in the functional regulation of a variety of immune cells upon engagement through homotypic or heterotypic interactions amongst them. Here we show that murine cytomegalovirus (MCMV) dampens the surface expression of several SLAM receptors during the course of the infection of macrophages. By screening a panel of MCMV deletion mutants, we identified m154 as an immunoevasin that effectively reduces the cell-surface expression of the SLAM family member CD48, a high-affinity ligand for natural killer (NK) and cytotoxic T cell receptor CD244.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioneop2v9eqt7sf7uh6ip168t5asalgkb9r): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once