Mixtures of hyaluronic acid (HA, in the semi-dilute entangled regime) with liposomes (high lipid concentration) exhibit a great interest in drug delivery. Considering the difference of microstructures when varying the liposome surface, we aimed to determine if liposome characteristics (surface and size) also influenced their release from these hybrid systems and to explore the mechanisms involved. Small-angle neutron scattering, cryogenic electron microscopy, zetametry, and dynamic light scattering were used to characterize liposomes.
View Article and Find Full Text PDFLow-boiling point perfluorocarbon nanodroplets (NDs) are valued as effective sonosensitive agents, encapsulating a liquid perfluorocarbon that would instantaneously vaporize at body temperature without the NDs shell. Those NDs have been explored for both therapeutic and diagnostic purposes. Here, phospholipid-shelled nanodroplets containing octafluoropropane (CF) or decafluorobutane (CF) formed by condensation of microbubbles were thoroughly characterized before blood-brain (BBB) permeabilization.
View Article and Find Full Text PDFThe formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution.
View Article and Find Full Text PDFSingle particle analysis from cryogenic transmission electron microscopy (cryo-EM) is particularly attractive for complexes for which structure prediction remains intractable, such as antibody-antigen complexes. Here we obtain the detailed structure of a particularly difficult complex between human epidermal growth factor receptor 2 (HER2) and the antigen-binding fragments from two distinct therapeutic antibodies binding to distant parts of the flexible HER2, pertuzumab and trastuzumab (HTP). We highlight the strengths and limitations of current data processing software in dealing with various kinds of heterogeneities, particularly continuous conformational heterogeneity, and in describing the motions that can be extracted from our dataset.
View Article and Find Full Text PDFDuring last few decades, oligochitosan (OCS)-coated nanoparticles have received great interest for nanomedicine, food and environment applications. However, their current formulation techniques are time-consuming with multi-synthesis/purification steps and sometimes require the use of organic solvents, crosslinkers and surfactants. Herein, we report a facile and rapid one-pot synthesis of OCS-based nanoparticles using photo-initiated reversible addition fragmentation chain transfer polymerization-induced self-assembly (Photo-RAFT PISA) under UV-irradiation at room temperature.
View Article and Find Full Text PDFIn meiotic homologous recombination (HR), BRCA2 facilitates loading of the recombinases RAD51 and DMC1 at the sites of double-strand breaks (DSBs). The HSF2BP-BRME1 complex interacts with BRCA2. Its absence causes a severe reduction in recombinase loading at meiotic DSB.
View Article and Find Full Text PDFMixtures of hyaluronic acid (HA) with liposomes lead to hybrid colloid-polymer systems with a great interest in drug delivery. However, little is known about their microstructure. Small angle neutron scattering (SANS) is a valuable tool to characterize these systems in the semi-dilute entangled regime (1.
View Article and Find Full Text PDFFunctional and versatile nano- and microassemblies formed by biological molecules are found at all levels of life, from cell organelles to full organisms. Understanding the chemical and physicochemical determinants guiding the formation of these assemblies is crucial not only to understand the biological processes they carry out but also to mimic nature. Among the synthetic peptides forming well-defined nanostructures, the octapeptide Lanreotide has been considered one of the best characterized, in terms of both the atomic structure and its self-assembly process.
View Article and Find Full Text PDFPolysaccharide coated nanoparticles represent a promising class of environmentally friendly latex to replace those stabilized by small toxic molecular surfactants. We report here an in situ formulation of free-surfactant core/shell nanoparticles latex consisting of dextran-based diblock amphiphilic copolymers. The synthesis of copolymers and the immediate latex formulation were performed directly in water using a photo-initiated reversible addition fragmentation chain transfer-mediated polymerization induced self-assembly strategy.
View Article and Find Full Text PDFPolymersomes are multicompartmental vesicular nano-objects obtained by self-assembly of amphiphilic copolymers. When prepared in the aqueous phase, they are composed of a hydrophobic bilayer enclosing water. Although such fascinating polymeric nano-objects have been widely reported with synthetic block copolymers, their formation from polysaccharide-based copolymers remains a significant challenge.
View Article and Find Full Text PDFIntracellular inclusions rich in alpha-synuclein are a hallmark of several neuropathological diseases including Parkinson's disease (PD). Previously, we reported the structure of alpha-synuclein fibrils (residues 1-121), composed of two protofibrils that are connected via a densely-packed interface formed by residues 50-57 (Guerrero-Ferreira, eLife 218;7:e36402). We here report two new polymorphic atomic structures of alpha-synuclein fibrils termed polymorphs 2a and 2b, at 3.
View Article and Find Full Text PDFEmerin is a nuclear envelope protein that contributes to genome organization and cell mechanics. Through its N-terminal LAP2-emerin-MAN1 (LEM)-domain, emerin interacts with the DNA-binding protein barrier-to-autointegration (BAF). Emerin also binds to members of the linker of the nucleoskeleton and cytoskeleton (LINC) complex.
View Article and Find Full Text PDFCarotenoid-containing oil droplets in the avian retina act as cut-off filters to enhance colour discrimination. We report a confocal resonance Raman investigation of the oil droplets of the domestic chicken, Gallus gallus domesticus. We show that all carotenoids present are in a constrained conformation, implying a locus in specific lipid binding sites.
View Article and Find Full Text PDFNucleation is one of the least understood steps of microtubule dynamics. It is a kinetically unfavorable process that is templated in the cell by the γ-tubulin ring complex or by preexisting microtubules; it also occurs in vitro from pure tubulin. Here we study the nucleation inhibition potency of natural or artificial proteins in connection with their binding mode to the longitudinal surface of α- or β-tubulin.
View Article and Find Full Text PDFAt the nuclear envelope, the inner nuclear membrane protein emerin contributes to the interface between the nucleoskeleton and the chromatin. Emerin is an essential actor of the nuclear response to a mechanical signal. Genetic defects in emerin cause Emery-Dreifuss muscular dystrophy.
View Article and Find Full Text PDFHuman retinal macular pigment (MP) is formed by the carotenoids lutein and zeaxanthin (including the isomer meso-zeaxanthin). MP has several functions in improving visual performance and protecting against the damaging effects of light, and MP levels are used as a proxy for macular health-specifically, to predict the likelihood of developing age-related macular degeneration. While the roles of these carotenoids in retinal health have been the object of intense study in recent years, precise mechanistic details of their protective action remain elusive.
View Article and Find Full Text PDF