This study aimed to develop microemulsions (MEs) containing α-bisabolol for the topical treatment of cutaneous leishmaniasis (CL). Initially, pseudoternary phase diagrams were developed using α-bisabolol as the oil phase, Eumulgin® CO 40 as the surfactant, Polymol® HE as the co-surfactant, and distilled water as the aqueous phase. Two transparent liquid systems (TLS) containing 5% of α-bisabolol were selected and characterized (F5E25 and F5EP25).
View Article and Find Full Text PDFLeishmaniases, a group of neglected tropical diseases caused by an intracellular parasite of the genus Leishmania, have significant impacts on global health. Current treatment options are limited due to drug resistance, toxicity, and high cost. This study aimed to develop nanostructured lipid carriers (NLCs) for delivering Citrus sinensis essential oil (CSEO) and its main constituent, R-limonene, against leishmaniasis.
View Article and Find Full Text PDFLeishmaniasis are a group of neglected infectious diseases caused by protozoa of the genus Leishmania with distinct presentations. The available leishmaniasis treatment options are either expensive and/or; cause adverse effects and some are ineffective for resistant Leishmania strains. Therefore, molecules derived from natural products as the monoterpene carvacrol, have attracted interest as promising anti-leishmania agents.
View Article and Find Full Text PDFThe objective of this study was to develop and characterize lipid nanoparticles (LNs) containing chloroaluminum phthalocyanine (ClAlPc) to reduce the aggregation of the drug and improve its skin penetration and its antitumor effect. LNs were prepared and characterized by using stearic acid (SA) as solid lipid and oleic acid (OA) as liquid lipid in different proportions. in vitro and in vivo skin penetration was evaluated using modified Franz diffusion cells and fluorescence microscopy, respectively.
View Article and Find Full Text PDFChitosan treated alginate microparticles were prepared with the purpose of incorporating all-trans retinoic acid (ATRA) using an inexpensive, simple and fast method, enhancing dermal localization and sustaining the release of ATRA into the skin. Microparticles characterization, drug-polymer interaction, release profile and in vitro skin retention were investigated. Microparticles presented spherical shape and drug loading capacity of 47%.
View Article and Find Full Text PDFThis study aimed at developing a topical formulation of lapachol, a compound isolated from various Bignoniaceae species and at evaluating its topical anti-inflammatory activity. The influence of the pharmaceutical form and different types of emulsifiers was evaluated by in-vitro release studies. The formulations showing the highest release rate were selected and assessed trough skin permeation and retention experiments.
View Article and Find Full Text PDF