Trichoderma is a soil-borne fungal genus that includes species with a significant impact on agriculture and industrial processes. Some Trichoderma strains exert beneficial effects in plants through root colonization, although little is known about how this interaction takes place. To better understand this process, the root colonization of wild-type Arabidopsis and the salicylic acid (SA)-impaired mutant sid2 by a green fluorescent protein (GFP)-marked Trichoderma harzianum strain was followed under confocal microscopy.
View Article and Find Full Text PDFAlternative and ecological strategies are necessary and demanded for disease management in order to reduce the use of pesticides in agriculture. Thus, the use of biological control agents such as plant growth-promoting rhizobacteria (PGPR) or several strains of the beneficial fungus Trichoderma spp. to combat plant diseases is the basis of biocontrol of plant pathogens and is a good approach to reach this healthy and environmentally adequate objective.
View Article and Find Full Text PDFBy means of an RT-PCR approach we isolated a specific tyrosine phosphatase (FsPTP1) induced by abscisic acid (ABA) and correlated with seed dormancy in Fagus sylvatica seeds. To provide genetic evidence of FsPTP1 function in seed dormancy and ABA signal transduction pathway, we overexpressed this gene in Cape Verde Island ecotype of Arabidopsis thaliana, which shows the deepest degree of seed dormancy among Arabidopsis accessions. As a result, 35S:FsPTP1 transgenic seeds showed a reduced dormancy and insensitivity to ABA and osmotic stress conditions accompanied by a reduction in the level of expression of RAB18 and RD29, well-known ABA-responsive genes.
View Article and Find Full Text PDFSalicylic acid (SA) is a plant hormone mainly associated with the induction of defense mechanism in plants, although in the last years there is increasing evidence on the role of SA in plant responses to abiotic stress. We recently reported that an increase in endogenous SA levels are able to counteract the inhibitory effects of several abiotic stress conditions during germination and seedling establishment of Arabidopsis thaliana and that this effect is modulated by gibberellins (GAs) probably through a member of the GASA (Giberellic Acid Stimulated in Arabidopsis) gene family, clearly showing the existence of a cross talk between these two plant hormones in Arabidopsis.
View Article and Find Full Text PDFExogenous application of gibberellic acid (GA(3)) was able to reverse the inhibitory effect of salt, oxidative, and heat stresses in the germination and seedling establishment of Arabidopsis (Arabidopsis thaliana), this effect being accompanied by an increase in salicylic acid (SA) levels, a hormone that in recent years has been implicated in plant responses to abiotic stress. Furthermore, this treatment induced an increase in the expression levels of the isochorismate synthase1 and nonexpressor of PR1 genes, involved in SA biosynthesis and action, respectively. In addition, we proved that transgenic plants overexpressing a gibberellin (GA)-responsive gene from beechnut (Fagus sylvatica), coding for a member of the GA(3) stimulated in Arabidopsis (GASA) family (FsGASA4), showed a reduced GA dependence for growth and improved responses to salt, oxidative, and heat stress at the level of seed germination and seedling establishment.
View Article and Find Full Text PDFTwo abscisic acid (ABA)-responsive clones (FsDhn1 and FsClo1) were isolated from a cDNA library of ABA-treated seeds of Fagus sylvatica L. FsDhn1 codes for type-II late embryogenesis abundant (LEA) proteins, also known as dehydrins. The corresponding transcripts were ABA-induced and expressed when seeds were artificially dried.
View Article and Find Full Text PDF