O-linked-N-acetylglucosaminylation (O-GlcNAcylation), one of the protein post-translational modifications, is the process of adding O-linked-β-D-N-acetylglucosaminylation (O-GlcNAc) to serine and threonine residues of proteins. O-GlcNAcylation regulates various fundamental cell biological processes, including gene transcription, signal transduction, and cellular metabolism. The role of dysregulated O-GlcNAcylation in tumorigenesis has been recognized, but its role in cancer therapy tolerance has not been elucidated.
View Article and Find Full Text PDFBackground: To enhance the quality of care available for children with central nervous system (CNS) tumors across the world, a systematic evaluation of capacity is needed to identify gaps and prioritize interventions. To that end, we created the pediatric neuro-oncology (PNO) resource assessment aid (PANORAMA) tool.
Methods: The development of PANORAMA encompassed 3 phases: operationalization, consensus building, and piloting.
N-methylation is a crucial post-modification process in natural product biosynthesis and also contributes to the metabolism of various physiological substances, such as neurotransmitter, hormone, and trace elements. In this study, we identified seven indolethylamine N-methyltransferase (INMT) family enzymes from the amphibian toad Bufo gargarizan with distinct catalytic properties. Among these enzymes, BNMT 1, BNMT 5, BNMT 6 and BNMT 7 exhibited notable promiscuity, demonstrating the ability to methylate multiple derivatives of indolethylamine, phenylethylamine, phenylethanolamine, and nicotinamide.
View Article and Find Full Text PDFThe osteoporotic bone defect caused by excessive activity of osteoclasts has posed a challenge for public healthcare. However, most existing bioinert bone cement fails to effectively regulate the pathological bone microenvironment and reconstruct bone homeostasis in the presence of osteoclast overactivity and osteoblast suppression. Herein, inspired by natural bone tissue, an in-situ modulation system for osteoporotic bone regeneration is developed by fabricating an injectable double-crosslinked PEGylated poly(glycerol sebacate) (PEGS)/calcium phosphate cement (CPC) loaded with sodium alendronate (ALN) (PEGS/CPC@ALN) adhesive bone cement.
View Article and Find Full Text PDFPurpose: Clinical specialists are supposed to inform childhood cancer patients of infertility risk and conduct fertility preservation (FP). However, little is known about whether doctors in China are fully prepared. This study aimed to investigate behavior, attitude, perception, and knowledge regarding FP among pediatric oncological specialists in a nation wide survey, to set the stage for improvements in current clinical practice patterns.
View Article and Find Full Text PDFUnlike many studies that regulate transport and separation behaviour of photogenerated charge carriers through controlling the chemical composite, our work demonstrates this goal can be achieved through simply tuning the molecular π-π packing from short-range to long-range within hydrogen-bonded organic frameworks (HOFs) without altering the building blocks or network topology. Further investigations reveal that the long-range π-π stacking significantly promotes electron delocalization and enhances electron density, thereby effectively suppressing electron-hole recombination and augmenting the charge transfer rate. Simultaneously, acting as a porous substrate, it boosts electron density of Pd nanoparticle loaded on its surfaces, resulting in remarkable CO photoreduction catalytic activity (CO generation rate: 48.
View Article and Find Full Text PDFBackground: Although clear cell sarcoma of kidney (CCSK) is rare, it is the second most common renal tumor in children after Wilms' tumor. NWTS and SIOP are two major groups which had made tremendous efforts on renal tumors, but the strategies are different, for NWTS follows the upfront surgery principle providing definite pathology and the SIOP follows the upfront chemotherapy principle, each has its own advantages. Here we aimed to evaluate the outcomes of CCSK in China following NWTS strategies to analyze the prognostic factors.
View Article and Find Full Text PDFCarbon nanotube (CNT)-based nanocomposites have found applications in making sensors for various types of physiological sensing. However, the sensors' fabrication process is usually complex, multistep, and requires longtime mixing and hazardous solvents that can be harmful to the environment. Here, we report a flexible dry silver (Ag)/CNT/polydimethylsiloxane (PDMS) nanocomposite-based sensor made by a solvent-free, low-temperature, time-effective, and simple approach for electrophysiological recording.
View Article and Find Full Text PDFAim: This study aimed to investigate the causal impact of inflammatory cytokines on Sjogren's Syndrome (SS) and to identify potential biomarkers for SS clinical management using Mendelian Randomization (MR).
Materials And Methods: Leveraging GWAS summary data of inflammatory cytokines and SS, we executed the first two-sample MR analysis. Genetic variants from prior GWASs associated with circulating inflammatory cytokines served as instrumental variables (IVs).
In current work, the effect of ripening stages (I, II, and III) on pulsed vacuum drying (PVD) behavior of goji berry was explored. The shortest drying time of goji berry was observed at stage I (6.99 h) which was 13.
View Article and Find Full Text PDFVacuum steam pulsed blanching (VSPB) was employed as a novel blanching technology on Cornus officinalis to soften the tissue for subsequent coring and dehydration. The current work aims to explore its effect on mass transfer behavior, PPO inactivation, drying characteristics, physicochemical properties, antioxidant capacity, and microstructure of C. officinalis.
View Article and Find Full Text PDFRational design and regulation of atomically precise photocatalysts are essential for constructing efficient photocatalytic systems tunable at both the atomic and molecular levels. Herein, we propose a platform-based strategy capable of integrating both pore space partition (PSP) and open-metal sites (OMSs) as foundational features for constructing high-performance photocatalysts. We demonstrate the first structural prototype obtained from this strategy: pore-partitioned NiTCPE- (TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene, = partitioned topology).
View Article and Find Full Text PDFRegenerative medicine in tissue engineering often relies on stem cells and specific growth factors at a supraphysiological dose. These approaches are costly and may cause severe side effects. Herein, therapeutic small extracellular vesicles (t-sEVs) endogenously loaded with a cocktail of human vascular endothelial growth factor A (VEGF-A) and human bone morphogenetic protein 2 (BMP-2) mRNAs within a customized injectable PEGylated poly (glycerol sebacate) acrylate (PEGS-A) hydrogel for bone regeneration in rats with challenging femur critical-size defects are introduced.
View Article and Find Full Text PDFPediatr Blood Cancer
December 2023
Background: Dinutuximab β can be used to treat children with high-risk neuroblastoma (NB). Due to its high price, whether dinutuximab β is cost-effective for the treatment of high-risk NB remains uncertain. Therefore, assessing the cost-effectiveness of dinutuximab β in children with high-risk NB is of high importance.
View Article and Find Full Text PDFStrong, psychedelic indolethylamines (IAAs) are typically present in trace amounts in the majority of species, but they build up significantly in the skin of amphibian toads, especially -methylated 5-hydroxytryptamine (5-HT) analogues. However, there is no pertinent research on the investigation of indoleamine -methyltransferase (INMT) in amphibians, nor is there any adequate information on the key amino acids that influence the activity of known INMTs from other species. Herein, we focused on toad INMT (BINMT) for the first time and preliminarily identified BINMT 1 from the transcriptomes of active on tryptamine, 5-HT, and -methyl-5-HT.
View Article and Find Full Text PDFBased on the concept of circular economy, citrus peel was considered a valuable source of bioactive compounds for high-value foods. Electrohydrodynamic (EHD) drying is a novel technology appropriated for the dehydration of heat-sensitive products such as citrus peel. In current work, EHD drying of citrus peel was performed based on alternating current (AC) or direct current (DC) sources at various voltage levels (9, 18, 27, 36, and 45 kV).
View Article and Find Full Text PDFA two-dimensional metal-organic framework, FICN-12, was constructed from tris[4-(1-pyrazole-4-yl)phenyl]amine (HTPPA) ligands and Ni secondary building units. The triphenylamine moiety in the HTPPA ligand readily absorbs UV-visible photons and sensitizes the Ni center to drive photocatalytic CO reduction. FICN-12 can be exfoliated into monolayer and few-layer nanosheets with a "top-down" approach, which exposes more catalytic sites and increases its catalytic activity.
View Article and Find Full Text PDFElectroencephalography has garnered interest for applications in mobile healthcare, human-machine interfaces, and Internet of Things. Conventional electroencephalography relies on wet and dry electrodes. Despite favorable interface impedance of wet electrodes and skin, the application of a large amount of gel at their interface with skin limits the electroencephalography spatial resolution, increases the risk of shorting between electrodes, and makes them unsuited for long-term mobile recording.
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) has a high incidence and mortality worldwide, which seriously threatens people's physical and mental health. Coagulation is closely related to the occurrence and development of HCC. Whether coagulation-related genes (CRGs) can be used as prognostic markers for HCC remains to be investigated.
View Article and Find Full Text PDFThis study aims to fabricate core-shell clarithromycin (CAM) microcapsules to cover up the bitter taste of CAM by spray drying with aqueous polymer dispersion. Water dispersion of Eudragit EPO and Surelease were innovatively used to encapsulate CAM into microcapsules via a one-step spray-drying method. The inlet air temperature, airflow rate, CAM-polymer ratio, and particle size of CAM were optimised based on drug content and T (the time taken for the drug to release equal to 6% /).
View Article and Find Full Text PDFPhotocatalytic CO reduction is one of the most cost-effective and environmentally friendly techniques of converting CO into high-value compounds and/or fuels. However, the performance of most current photocatalytic CO reduction catalysts is less than satisfactory for practical applications. Here, we synthesized a heterogeneous structure by integrating CuO and a porphyrin hydrogen-bonded organic framework (PFC-45), which was then fabricated into a thin-film catalyst on carbolic paper (CP) using a facile electrophoretic deposition technology.
View Article and Find Full Text PDFIn natural photosynthesis, the architecture of multiproteins integrates more chromophores than redox centers and simultaneously creates a well-controlled environment around the active site. Herein, we demonstrate that these features can be emulated in a prototype hydrogen-bonded organic framework (HOF) through simply varying the proportion of metalated porphyrin in the structure. Further studies demonstrate that changing the metalloporphyrin content not only realizes a fine tuning of the photosensitizer/catalyst ratio, but also alters the microenvironment surrounding the active site and the charge separation efficiency.
View Article and Find Full Text PDFUnder topological guidance, the self-assembly process based on a tetratopic porphyrin synthon results in a hydrogen-bonded organic framework (HOF) with the predicted square layers topology (sql) but unsatisfied stability. Strikingly, simply introducing a transition metal in the porphyrin center does not change the network topology but drastically causes noticeable change on noncovalent interaction, orbital overlap, and molecular geometry, therefore ultimately giving rise to a series of metalloporphyrinic HOFs with high surface area, and excellent stability (intact after being soaked in boiling water, concentrated HCl, and heated to 270 °C). On integrating both photosensitizers and catalytic sites into robust backbones, this series of HOFs can effectively catalyze the photoreduction of CO to CO, and their catalytic performances greatly depend on the chelated metal species in the porphyrin centers.
View Article and Find Full Text PDFResearch (Wash D C)
October 2021
The poor electrical conductivity of metal-organic frameworks (MOFs) has been a stumbling block for its applications in many important fields. Therefore, exploring a simple and effective strategy to regulate the conductivity of MOFs is highly desired. Herein, anionic guest molecules are incorporated inside the pores of a cationic MOF (PFC-8), which increases its conductivity by five orders of magnitude while maintaining the original porosity.
View Article and Find Full Text PDF