Publications by authors named "An-an Jiang"

In diploid mammals, allele-specific three-dimensional (3D) genome architecture may lead to imbalanced gene expression. Through ultradeep in situ Hi-C sequencing of three representative somatic tissues (liver, skeletal muscle, and brain) from hybrid pigs generated by reciprocal crosses of phenotypically and physiologically divergent Berkshire and Tibetan pigs, we uncover extensive chromatin reorganization between homologous chromosomes across multiple scales. Haplotype-based interrogation of multi-omic data revealed the tissue dependence of 3D chromatin conformation, suggesting that parent-of-origin-specific conformation may drive gene imprinting.

View Article and Find Full Text PDF

Objective: The QingYu pig is well known for its excellent meat quality attributes in Sichuan province, China. In order to improve its production efficiency, the determination of genetic factors contributing to quantifiable economic traits of livestock is important. Moreover, the cross-breeding of QingYu pigs with western breeds possessing strong growth attributes is an efficient way to improve the performance of this breed.

View Article and Find Full Text PDF
Article Synopsis
  • Various genetic techniques help trace cell lineage during tissue development, with some focusing on spatial/temporal aspects and others linking gene expression to lineage.
  • The G-TRACE system allows for quick visualization of GAL4 expression patterns, enabling genome-wide expression-based lineage studies conducted by UCLA students and high school scholars.
  • Findings revealed new expression-based lineage patterns and were compiled into the G-TRACE Expression Database (GED), contributing to better student learning outcomes and retention in STEM fields.
View Article and Find Full Text PDF

Dysfunctional umbilical cord blood (UCB) is a key factor for the development of intrauterine growth restriction (IUGR) . Poor degrees of angiogenesis were observed during IUGR development. Here, it was demonstrated that NV-EXO (normal piglet's Umbilical Veins derived exosomes) promoted angiogenesis within the subdued pro-angiogenesis context of IV-EXO (IUGR piglet's Umbilical Veins derived exosomes).

View Article and Find Full Text PDF

High-altitude inhospitable environments impose a formidable life challenge for the local animals. Training and exposure to high-altitude environments produce both distinct physiological and phenotypic characteristics. The mitochondrion, an organelle crucial for the energy production, plays an important role in hypoxia adaptation.

View Article and Find Full Text PDF

Increasing evidence indicates that muscular dysfunction or alterations in skeletal muscle fiber-type composition not only are involved in muscle metabolism and function but also can limit functional capacity. Therefore, understanding the mechanisms regulating key events during skeletal myogenesis is necessary. Betaine is a naturally occurring component of commonly eaten foods.

View Article and Find Full Text PDF

Skeletal muscle is an essential tissue to maintain the normal functions of an organism. It is also closely associated with important economic performance, such as carcass weight, of domestic animals. In recent years, studies using high-throughput sequencing techniques have identified numerous long non-coding RNAs (lncRNAs) with myogenic functions involved in regulation of gene expression at multiple levels, including epigenetic, transcriptional and post-transcriptional regulation.

View Article and Find Full Text PDF

Obesity is a major driver of metabolic diseases such as nonalcoholic fatty liver disease, certain cancers, and insulin resistance. However, there are no effective drugs to treat obesity. Betaine is a nontoxic, chemically stable and naturally occurring molecule.

View Article and Find Full Text PDF

Background: Species living at high altitude are subject to strong selective pressures due to inhospitable environments (e.g., hypoxia, low temperature, high solar radiation, and lack of biological production), making these species valuable models for comparative analyses of local adaptation.

View Article and Find Full Text PDF

A better understanding of the control of lipogenesis is of critical importance for both human and animal physiology. This requires a better knowledge of the changes of gene expression during the process of adipose tissue development. Thus, the objective of the current study was to determine the effects of development on subcutaneous adipose tissue gene expression in growing and adult pigs.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play critical roles in many important biological processes, such as growth and development in mammals. Various studies of porcine muscle development have mainly focused on identifying miRNAs that are important for fetal and adult muscle development; however, little is known about the role of miRNAs in middle-aged muscle development. Here, we present a comprehensive investigation of miRNA transcriptomes across five porcine muscle development stages, including one prenatal and four postnatal stages.

View Article and Find Full Text PDF

Background: Age-related physiological, biochemical and functional changes in mammalian skeletal muscle have been shown to begin at the mid-point of the lifespan. However, the underlying changes in DNA methylation that occur during this turning point of the muscle aging process have not been clarified. To explore age-related genomic methylation changes in skeletal muscle, we employed young (0.

View Article and Find Full Text PDF

Domesticated organisms have experienced strong selective pressures directed at genes or genomic regions controlling traits of biological, agricultural or medical importance. The genome of native and domesticated pigs provide a unique opportunity for tracing the history of domestication and identifying signatures of artificial selection. Here we used whole-genome sequencing to explore the genetic relationships among the European native pig Berkshire and breeds that are distributed worldwide, and to identify genomic footprints left by selection during the domestication of Berkshire.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are non-coding small RNA ∼22 nucleotides in length that can regulate the expression of a wide range of coding genes at the post-transcriptional level. Visceral adipose tissues (VATs) and subcutaneous adipose tissues (SATs), the two main fat compartments in mammals, are anatomically, physiologically, metabolically, and clinically distinct. Various studies of adipose tissues have focused mainly on DNA methylation, and mRNA and protein expression, nonetheless little research sheds directly light on the miRNA transcriptome differences between these two distinct adipose tissue types.

View Article and Find Full Text PDF

Previous studies have indicated two main domestic pig dispersal routes in East Asia: one is from the Mekong region, through the upstream region of the Yangtze River (URYZ) to the middle and upstream regions of the Yellow River, the other is from the middle and downstream regions of the Yangtze River to the downstream region of the Yellow River, and then to northeast China. The URYZ was regarded as a passageway of the former dispersal route; however, this assumption remains to be further investigated. We therefore analyzed the hypervariable segements of mitochondrial DNA from 513 individual pigs mainly from Sichuan and the Tibet highlands and 1,394 publicly available sequences from domestic pigs and wild boars across Asia.

View Article and Find Full Text PDF

Determination of an optimal number/set of endogenous control (EC) microRNA (miRNA) genes is a critical but often an underappreciated aspect of quantitative gene expression analysis. In this study, the expression stabilities of 13 selected porcine EC miRNA genes were compared in all 47 tissue-specific normal tissues, 10 types of adipose tissue, and four types of muscle tissue using an EvaGreen quantitative PCR approach. Seven, 12, and 11 genes exhibited credible stability in the three groups, respectively.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs), a large family of short endogenous RNAs known to post-transcriptionally repress gene expression, participate in the regulation of almost every cellular process. Changes in miRNA expression are associated with many pathologies. Ovarian folliculogenesis and testicular spermatogenesis are complex and coordinated biological processes, in which tightly regulated expression and interaction of a multitude of genes could be regulated by these miRNAs.

View Article and Find Full Text PDF

The domestic pig is of enormous agricultural significance and valuable models for many human diseases. Information concerning the pig microRNAome (miRNAome) has been long overdue and elucidation of this information will permit an atlas of microRNA (miRNA) regulation functions and networks to be constructed. Here we performed a comprehensive search for porcine miRNAs on ten small RNA sequencing libraries prepared from a mixture of tissues obtained during the entire pig lifetime, from the fetal period through adulthood.

View Article and Find Full Text PDF