Background: The accuracy of the ICD-10-CM (International Classification of Diseases, Tenth Revision, Clinical Modification) procedure coding system (PCS) is crucial for generating correct Taiwan diagnosis-related groups (DRGs), as coding errors can lead to financial losses for hospitals.
Objective: The study aimed to determine the consistency between an artificial intelligence (AI)-assisted coding module and manual coding, as well as to identify clinical specialties suitable for implementing the developed AI-assisted coding module.
Methods: This study examined the AI-assisted coding module from the perspective of health care professionals.
Background: International Classification of Diseases codes are widely used to describe diagnosis information, but manual coding relies heavily on human interpretation, which can be expensive, time consuming, and prone to errors. With the transition from the International Classification of Diseases, Ninth Revision, to the International Classification of Diseases, Tenth Revision (ICD-10), the coding process has become more complex, highlighting the need for automated approaches to enhance coding efficiency and accuracy. Inaccurate coding can result in substantial financial losses for hospitals, and a precise assessment of outcomes generated by a natural language processing (NLP)-driven autocoding system thus assumes a critical role in safeguarding the accuracy of the Taiwan diagnosis related groups (Tw-DRGs).
View Article and Find Full Text PDF