In the rapidly expanding domain of scientific research, tracking and synthesizing information from the rapidly increasing volume of publications pose significant challenges. To address this, we introduce a novel high-throughput pipeline that employs ChatGPT to systematically extract and analyze connectivity information from the full-texts and abstracts of 24,237 and 150,538 research publications concerning Caenorhabditis elegans and Drosophila melanogaster, respectively. This approach has effectively identified 200,219 and 1,194,587 interactions within the C.
View Article and Find Full Text PDF