The judicious construction of interfaces with swift charge communication to enhance the utilization efficiency of photogenerated carriers is a viable strategy for boosting the photocatalytic performance of heterojunctions. Herein, an in-situ partial conversion strategy is reported for decorating lead-free halide perovskite CsBiBr nanocrystals onto BiOBr hollow nanotube, resulting in the formation of an S-scheme heterojunction CsBiBr/BiOBr. This unique in-situ growth approach imparts a closely contacted interface to the CsBiBr/BiOBr heterojunction, facilitating interfacial electron transfer and spatial charge separation compared to a counterpart (CsBiBr:BiOBr) fabricated via traditional electrostatic self-assembly.
View Article and Find Full Text PDF