The primary objective of this study is to enhance the prediction accuracy of intradialytic hypotension in patients undergoing hemodialysis. A significant challenge in this context arises from the nature of the data derived from the monitoring devices and exhibits an extreme class imbalance problem. Traditional predictive models often display a bias towards the majority class, compromising the accuracy of minority class predictions.
View Article and Find Full Text PDFPurpose: To develop a deep convolutional neural network that enables the prediction of postoperative visual outcomes after epiretinal membrane surgery based on preoperative optical coherence tomography images and clinical parameters to refine surgical decision making.
Methods: A total of 529 patients with idiopathic epiretinal membrane who underwent standard vitrectomy with epiretinal membrane peeling surgery by two surgeons between January 1, 2014, and June 1, 2020, were enrolled. The newly developed Heterogeneous Data Fusion Net was introduced to predict postoperative visual acuity outcomes (improvement ≥2 lines in Snellen chart) 12 months after surgery based on preoperative cross-sectional optical coherence tomography images and clinical factors, including age, sex, and preoperative visual acuity.
While prognosis and risk of progression are crucial in developing precise therapeutic strategy in neovascular age-related macular degeneration (nAMD), limited predictive tools are available. We proposed a novel deep convolutional neural network that enables feature extraction through image and non-image data integration to seize imperative information and achieve highly accurate outcome prediction. The Heterogeneous Data Fusion Net (HDF-Net) was designed to predict visual acuity (VA) outcome (improvement ≥ 2 line or not) at 12th months after anti-VEGF treatment.
View Article and Find Full Text PDFThe aim of this study is to develop an AI model that accurately identifies referable blepharoptosis automatically and to compare the AI model's performance to a group of non-ophthalmic physicians. In total, 1000 retrospective single-eye images from tertiary oculoplastic clinics were labeled by three oculoplastic surgeons as having either ptosis, including true and pseudoptosis, or a healthy eyelid. A convolutional neural network (CNN) was trained for binary classification.
View Article and Find Full Text PDF