18.188.92.132=18.1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=An+Ting+Hsia%5Bauthor%5D&datetype=edat&usehistory=y&retmax=1&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b490818.188.92.132=18.1
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a7e8e12ad030607e90b&query_key=1&retmode=xml&retstart=-10&retmax=25&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908
: To summarize our institutional prostate stereotactic body radiation therapy (SBRT) experience using auto beam hold (ABH) technique for intrafractional prostate motion and assess ABH tolerance of 10-millimeter (mm) diameter.: Thirty-two patients (160 fractions) treated using ABH technique between 01/2018 and 03/2021 were analyzed. During treatment, kV images were acquired every 20-degree gantry rotation to visualize 3-4 gold fiducials within prostate to track target motion.
View Article and Find Full Text PDFThis study compared the EZFluence planning technique for irradiation of the breast with commonly used Field-in-Field (FiF) technique by analyzing the dose uniformity, the dose to the lung, heart, and other organs at risk, the total Monitor Unit (MU), and the time spent for planning. Two different 3-dimensional conformal dose plans were created for 20 breast cancer patients. Six patients were treated to a dose of 5000 cGy in 25 fractions and 14 were treated to a dose of 4256 cGy in 16 fractions.
View Article and Find Full Text PDFJ Appl Clin Med Phys
July 2018
In this study we investigated the dose rate response characteristics of the Digital Megavolt Imager (DMI) detector, including panel saturation, linearity, and imager ghosting effects for flattening filter-free (FFF) beams. The DMI detector dose rate response characteristics were measured as a function of dose rate on a Varian TrueBeam machine. Images were acquired at dose rates ranging from 400 to 1400 MU/min for 6XFFF and 400 to 2400 MU/min for 10XFFF.
View Article and Find Full Text PDFBackground And Purpose: Dosimetric leaf gap (DLG) is a parameter to model the round-leaf-end effect of multi-leaf collimators (MLC) that is important for treatment planning dose calculations in radiotherapy. In this study we investigated on the relationship between the DLG values and the dose calculation errors for a high-definition MLC.
Materials And Methods: Three sets of experiments were conducted: (1) DLG measurements using sweeping-gap technique, (2) DLG adjustment based on spine radiosurgery plan measurements, and (3) DLG verification using films and ion-chambers (IC).
J Appl Clin Med Phys
May 2015
The purpose of this paper is to demonstrate that an inexpensive 3D printer can be used to manufacture patient-specific bolus for external beam therapy, and to show we can accurately model this printed bolus in our treatment planning system for accurate treatment delivery. Percent depth-dose measurements and tissue maximum ratios were used to determine the characteristics of the printing materials, acrylonitrile butadiene styrene and polylactic acid, as bolus material with physical density of 1.04 and 1.
View Article and Find Full Text PDF