The use of doxorubicin (DOXO) as a chemotherapeutic drug has been hampered by cardiotoxicity leading to cardiomyopathy and heart failure. Folic acid (FA) is a modulator of endothelial nitric oxide (NO) synthase (eNOS), which in turn is an important player in diseases associated with NO insufficiency or NOS dysregulation, such as pressure overload and myocardial infarction. However, the role of FA in DOXO-induced cardiomyopathy is poorly understood.
View Article and Find Full Text PDFNitric oxide (NO) produced by endothelial NO synthase (eNOS) exerts beneficial effects in a variety of cardiovascular disease states. Studies on the benefit of eNOS activity in pressure-overload cardiac hypertrophy and dysfunction produced by aortic stenosis are equivocal, which may be due to different expression levels of eNOS or different severities of pressure-overload. Consequently, we investigated the effects of eNOS-expression level on cardiac hypertrophy and dysfunction produced by mild or severe pressure-overload.
View Article and Find Full Text PDFOxidative stress greatly influences the pathogenesis of various cardiovascular disorders. Coronary interventions, including balloon angioplasty and coronary stent implantation, are associated with increased vascular levels of reactive oxygen species in conjunction with altered endothelial cell and smooth muscle cell function. These alterations potentially lead to restenosis, thrombosis, or endothelial dysfunction in the treated artery.
View Article and Find Full Text PDFFree Radic Biol Med
October 2012
Reactive oxygen species (ROS) are generated by several different cellular sources, and their accumulation within the myocardium is widely considered to cause harmful oxidative stress. On the other hand, their role as second messengers has gradually emerged. The equilibrium of the nitroso/redox balance between reactive nitrogen species and ROS is crucial for the health of cardiomyocytes.
View Article and Find Full Text PDFThe utility of anthracycline antineoplastic agents in the clinic is compromised by the risk of cardiotoxicity. It has been calculated that approximately 10% of patients treated with doxorubicin or its derivatives will develop cardiac complications up to 10 years after the cessation of chemotherapy. Oxidative stress has been established as the primary cause of cardiotoxicity.
View Article and Find Full Text PDFReactive oxygen species (ROS) are essential in vascular homeostasis but may contribute to vascular dysfunction when excessively produced. Superoxide anion (O(2)(·-)) can directly affect vascular tone by reacting with K(+) channels and indirectly by reacting with nitric oxide (NO), thereby scavenging NO and causing nitroso-redox imbalance. After myocardial infarction (MI), oxidative stress increases, favoring the imbalance and resulting in coronary vasoconstriction.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
March 2012
Endothelial nitric oxide synthase (eNOS) serves as a critical enzyme in maintaining vascular pressure by producing nitric oxide (NO); hence, it has a crucial role in the regulation of endothelial function. The bioavailability of eNOS-derived NO is crucial for this function and might be affected at multiple levels. Uncoupling of eNOS, with subsequently less NO and more superoxide generation, is one of the major underlying causes of endothelial dysfunction found in atherosclerosis, diabetes, hypertension, cigarette smoking, hyperhomocysteinemia, and ischemia/reperfusion injury.
View Article and Find Full Text PDFHeart failure (HF) occurs when the adaptation mechanisms of the heart fail to compensate for stress factors, such as pressure overload, myocardial infarction, inflammation, diabetes, and cardiotoxic drugs, with subsequent ventricular hypertrophy, fibrosis, myocardial dysfunction, and chamber dilatation. Oxidative stress, defined as an imbalance between reactive oxygen species (ROS) generation and the capacity of antioxidant defense systems, has been authenticated as a pivotal player in the cardiopathogenesis of the various HF subtypes. The family of NADPH oxidases has been investigated as a key enzymatic source of ROS in the pathogenesis of HF.
View Article and Find Full Text PDFRationale: One of the physiological mechanisms by which the heart adapts to a rise in blood pressure is by augmenting myocyte stretch-mediated intracellular calcium, with a subsequent increase in contractility. This slow force response was first described over a century ago and has long been considered compensatory, but its underlying mechanisms and link to chronic adaptations remain uncertain. Because levels of the matricellular protein thrombospondin-4 (TSP4) rapidly rise in hypertension and are elevated in cardiac stress overload and heart failure, we hypothesized that TSP4 is involved in this adaptive mechanism.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
September 2011
The exogenous administration of tetrahydrobiopterin (BH4), an essential cofactor of nitric oxide synthase (NOS), has been shown to reduce left ventricular hypertrophy, fibrosis, and cardiac dysfunction in mice with pre-established heart disease induced by pressure-overload. In this setting, BH4 re-coupled endothelial NOS (eNOS), with subsequent reduction of NOS-dependent oxidative stress and reversal of maladaptive remodeling. However, recent studies suggest the effective BH4 dosing may be narrower than previously thought, potentially due to its oxidation upon oral consumption.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2011
The pathogenesis of many cardiovascular diseases is associated with reduced nitric oxide (NO) bioavailability and/or increased endothelial NO synthase (eNOS)-dependent superoxide formation. These findings support that restoring and conserving adequate NO signaling in the heart and blood vessels is a promising therapeutic intervention. In particular, modulating eNOS, e.
View Article and Find Full Text PDFJ Mol Cell Cardiol
October 2011
Tetrahydrobiopterin (BH(4)) is an essential cofactor for aromatic amino acid hydroxylases and for all three nitric oxide synthase (NOS) isoforms. It also has a protective role in the cell as an antioxidant and scavenger of reactive nitrogen and oxygen species. Experimental studies in humans and animals demonstrate that decreased BH(4)-bioavailability, with subsequent uncoupling of endothelial NOS (eNOS) plays an important role in the pathogenesis of endothelial dysfunction, hypertension, ischemia-reperfusion injury, and pathologic cardiac remodeling.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2011
The homodimeric flavohemeprotein endothelial nitric oxide synthase (eNOS) oxidizes l-arginine to l-citrulline and nitric oxide (NO), which acutely vasodilates blood vessels and inhibits platelet aggregation. Chronically, eNOS has a major role in the regulation of blood pressure and prevention of atherosclerosis by decreasing leukocyte adhesion and smooth muscle proliferation. However, a disturbed vascular redox balance results in eNOS damage and uncoupling of oxygen activation from l-arginine conversion.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2010
Lung ischemia-reperfusion injury remains one of the major complications after cardiac bypass surgery and lung transplantation. Due to its dual blood supply system and the availability of oxygen from alveolar ventilation, the pathogenetic mechanisms of ischemia-reperfusion injury in the lungs are more complicated than in other organs, where loss of blood flow automatically leads to hypoxia. In this review, an extensive overview is given of the molecular and cellular mechanisms that are involved in the pathogenesis of lung ischemia-reperfusion injury and the possible therapeutic strategies to reduce or prevent it.
View Article and Find Full Text PDFJ Mol Cell Cardiol
June 2010
The presence of a third beta-adrenergic receptor (beta 3-AR) in the cardiovascular system has challenged the classical paradigm of sympathetic regulation by beta1- and beta2-adrenergic receptors. While beta 3-AR's role in the cardiovascular system remains controversial, increasing evidence suggests that it serves as a "brake" in sympathetic overstimulation - it is activated at high catecholamine concentrations, producing a negative inotropic effect that antagonizes beta1- and beta2-AR activity. The anti-adrenergic effects induced by beta 3-AR were initially linked to nitric oxide (NO) release via endothelial NO synthase (eNOS), although more recently it has been shown under some conditions to increase NO production in the cardiovascular system via the other two NOS isoforms, namely inducible NOS (iNOS) and neuronal NOS (nNOS).
View Article and Find Full Text PDF