Smart electrocatalysts are synthesized from chitosan polymer and magnetic particles to enhance power by plant based sediment microbial fuel cell (P-SMFC). Cross-linked procedure is performed gelatinous microspheres as supporting metals (Cu, Pd, Mn, Pt, and Ni) and magnetic particles which create a porous structure on smart catalysts for increase ORR activity. A high and quick OCV rising is achieved with addition of Mag-Pd-Ch in reactor, and OCV value immediately increase from 0.
View Article and Find Full Text PDFBoron (B) in the irrigation water can be hazardous to human beings and other aquatic or terrestrial organisms when B concentration exceeds a certain level. More importantly, B removal from irrigation water is relatively difficult using conventional processes. In the present experiment, an innovative treatment model based on monoculture and polyculture duckweed wastewater treatment modules was tested for B-rich irrigation water purification and bioelectricity harvesting.
View Article and Find Full Text PDFProtection of water sources which are used for irrigation has raised great interest in the last years among the environmental strategists due to potential water scarcity worldwide. Excessive boron (B) in irrigation water poses crucial environmental problems in the agricultural zones and it leads to toxicity symptoms in crops, as well as human beings. In the present research, economic water treatment models consist of dried common wetland plants (Lemna gibba, Phragmites australis, and Typha latifolia) and Lemna gibba accumulation was tested and assessed to create a simple, cost-effective, and eco-friendly method for B removal from irrigation water.
View Article and Find Full Text PDFAn operation of microcosm-constructed wetland modules combined with microbial fuel cell device (CW-MFC) was assessed for wastewater treatment and bioelectric generation. One of the crucial aims of the present experiment is also to determine effect of vegetation on wastewater treatment process and bioelectric production in wetland matrix with microbial fuel cell. Accordingly, CW-MFC modules with vegetation had higher treatment efficiency compared to unplanted wetland module, and average COD, NH, and TP removal efficiency in vegetated wetland modules were ranged from 85 to 88%, 95 to 97%, and 95 to 97%, respectively.
View Article and Find Full Text PDFThe present study assesses ability of Lemna gibba L. using a batch reactor approach to bioaccumulation boron (B) from irrigation waters which were collected from a stream in largest borax reserve all over the world. The important note that bioaccumulation of B from irrigation water was first analyzed for first time in a risk assessment study using a Lemna species exposed to various B concentrations.
View Article and Find Full Text PDFA major environmental problem associated with boron (B) mining in many parts of the world is B pollution, which can become a point source of B mine effluent pollution to aquatic habitats. In this study, a cost-effective, environment-friendly, and sustainable prototype engineered wetland was evaluated and tested to prevent B mine effluent from spilling into adjoining waterways in the largest B reserve in the world. According to the results, average B concentrations in mine effluent significantly decreased from 17.
View Article and Find Full Text PDFInt J Phytoremediation
July 2014
Constructed wetlands are of increasing interest worldwide given that they represent an eco-technological solution to many environmental problems such as wastewater treatment. Turkey possesses approximately 70% of the world's total boron (B) reserves, and B contamination occurs in both natural and cultivated sites throughout Turkey, particularly in the north-west of the country. This study analyzes B removal and plant uptake of B in pilot plots of subsurface horizontal-flow constructed wetlands.
View Article and Find Full Text PDFThis study focuses on describing the ability of a small-scale, subsurface-flow-polyculture-constructed wetland (PCW) to treat boron (B) mine effluent from the world's largest borax mine (Kırka, Turkey) under field conditions. This application is among the first effluent treatment methods of this type in both Turkey and the world. This study represents an important resource on how subsurface-flow-constructed wetlands could be used to treat B mine effluents in the field conditions.
View Article and Find Full Text PDF