Spontaneous charge separation in drops sliding over a hydrophobized insulator surface is a well-known phenomenon and lots of efforts have been made to utilize this effect for energy harvesting. For maximizing the efficiency of such devices, a comprehensive understanding of the dewetted surface charge would be required to quantitatively predict the electric current signals, in particular for drop sequences. Here, we use a method based on mirror charge detection to locally measure the surface charge density after drops move over a hydrophobic surface.
View Article and Find Full Text PDFOil/water interfaces are ubiquitous in nature. Opposing polarities at these interfaces attract surface-active molecules, which can seed complex viscoelastic or even solid interfacial structure. Biorelevant proteins such as hydrophobin, polymers such as PNIPAM, and the asphaltenes in crude oil (CRO) are examples of some systems where such layers can occur.
View Article and Find Full Text PDFIn microfluidic studies of improved oil recovery, mostly pore networks with uniform depth and surface chemistry are used. To better mimic the multiple porosity length scales and surface heterogeneity of carbonate reservoirs, we coated a 2.5D glass microchannel with calcite particles.
View Article and Find Full Text PDFInhaled drug delivery can be limited by heterogeneous dose distribution. An additive that would disperse drug over the internal surfaces of the lung after aerosol deposition could improve dosing uniformity and increase the treated area. Our previous studies demonstrated that surfactant additives can produce surface tension-driven (Marangoni) flows that effectively dispersed aerosol-delivered drugs over mucus surfaces.
View Article and Find Full Text PDFWe investigate the charge separation caused by the motion of a water drop across a hydrophobic, insulating solid surface. Although the phenomenon of liquid charging has been consistently reported, these reports are primarily observational, results are difficult to reproduce, and no quantitative theory has been developed. In this work, we address both the experimental and theoretical sides of this problem.
View Article and Find Full Text PDFColloids Surf A Physicochem Eng Asp
June 2018
Traditionally, an interface is defined as a boundary between immiscible phases. However, previous work has shown that even when two fluids are completely miscible, they maintain a detectable "effective interface" for long times. Miscible interfaces have been studied in various systems of two fluids with a single boundary between them.
View Article and Find Full Text PDFCurr Opin Colloid Interface Sci
July 2018
Background: Secondary lung infections are the primary cause of morbidity associated with cystic fibrosis lung disease. Aerosolized antibiotic inhalation is potentially advantageous but has limited effectiveness due to altered airway aerodynamics and deposition patterns that limit drug access to infected regions. One potential strategy to better reach infected areas is to formulate aerosols with surfactants that induce surface tension gradients and drive postdeposition drug dispersal via Marangoni transport along the airway surface liquid (ASL).
View Article and Find Full Text PDFIt has long been known that deposited drops of surfactant solution induce Marangoni flows at air-liquid interfaces. These surfactant drops create a surface tension gradient, which causes an outward flow at the fluid interface. We show that aqueous phospholipid dispersions may be used for this same purpose.
View Article and Find Full Text PDF