Publications by authors named "Amy Yan"

Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors.

View Article and Find Full Text PDF

Traumatic brain injury is one of the leading causes of morbidity and mortality worldwide and is one of the major public healthcare burdens in the US, with millions of patients suffering from the traumatic brain injury itself (approximately 1.6 million/year) or its repercussions (2-6 million patients with disabilities). The severity of traumatic brain injury can range from mild transient neurological dysfunction or impairment to severe profound disability that leaves patients completely non-functional.

View Article and Find Full Text PDF

The ability to reverse the binding of aptamers to their target proteins has received considerable attention for developing controllable therapeutic agents. Recently, use of aptamers as reversible cell-sorting ligands has also sparked interest. Antibodies are currently utilized for isolating cells expressing a particular cell surface receptor.

View Article and Find Full Text PDF

CRISPR-based editing has revolutionized genome engineering despite the observation that many DNA sequences remain challenging to target. Unproductive interactions formed between the single guide RNA's (sgRNA) Cas9-binding scaffold domain and DNA-binding antisense domain are often responsible for such limited editing resolution. To bypass this limitation, we develop a functional SELEX (systematic evolution of ligands by exponential enrichment) approach, termed BLADE (binding and ligand activated directed evolution), to identify numerous, diverse sgRNA variants that bind Streptococcus pyogenes Cas9 and support DNA cleavage.

View Article and Find Full Text PDF

Strategies to direct drugs specifically to cancer cells have been increasingly explored, and significant progress has been made toward such targeted therapy. For example, drugs have been conjugated into tumor-targeting antibodies to enable delivery directly to tumor cells. Aptamers are an attractive class of molecules for this type of drug targeting as they are high-affinity/high-specificity ligands, relatively small in size, GMP manufacturable at a large-scale, amenable to chemical conjugation, and not immunogenic.

View Article and Find Full Text PDF

The mRNA-based BNT162b2 and inactivated whole-virus CoronaVac are two widely used COVID-19 vaccines that confer immune protection to healthy individuals. However, hesitancy toward COVID-19 vaccination appeared to be common for patients with neuromuscular diseases (NMDs) due to the paucity of data on the safety and efficacy in this high-risk patient population. Therefore, we examined the underlying factors associated with vaccine hesitancy across time for NMDs and assessed the reactogenicity and immunogenicity of these two vaccines.

View Article and Find Full Text PDF

Actin assembly facilitates vesicle formation in several trafficking pathways, including clathrin-mediated endocytosis (CME). Interestingly, actin does not assemble at all CME sites in mammalian cells. How actin networks are organized with respect to mammalian CME sites and how assembly forces are harnessed, are not fully understood.

View Article and Find Full Text PDF

The mechanisms underlying memory loss associated with Alzheimer's disease and related dementias (ADRD) remain unclear, and no effective treatments exist. Fundamental studies have shown that a set of transcriptional regulatory proteins of the nuclear receptor 4a (Nr4a) family serve as molecular switches for long-term memory. Here, we show that Nr4a proteins regulate the transcription of genes encoding chaperones that localize to the endoplasmic reticulum (ER).

View Article and Find Full Text PDF

Aptamers represent a potentially important class of ligands for the development of diagnostics and therapeutics. However, it is often difficult to compare the function and specificity of many of these molecules as assay formats and conditions vary greatly. Here, with an interest in developing aptamer targeted therapeutics that could effectively deliver cargoes to cells, we chemically synthesize 15 aptamers that have been reported to target cell surface receptors or cells.

View Article and Find Full Text PDF

Age-associated cognitive impairments affect an individual's quality of life and are a growing problem in society. Therefore, therapeutic strategies to treat age-related cognitive decline are needed to enhance the quality of life among the elderly. Activation of the Nr4a family of transcription factors has been closely linked to memory formation and dysregulation of these transcription factors is thought to be associated with age-related cognitive decline.

View Article and Find Full Text PDF

The regenerative capacity of burn wounds, and the need for surgical intervention, depends on wound depth. Clinical visual assessment is considered the gold standard for burn depth assessment but it remains a subjective and inaccurate method for tissue evaluation. The purpose of this study was to compare visual assessment with microscopic and molecular techniques for human burn depth determination, and illustrate differences in the evaluation of tissue for potential regenerative capacity.

View Article and Find Full Text PDF

Targeting cells with aptamers for the delivery of therapeutic cargoes, in particular oligonucleotides, represents one of the most exciting applications of the aptamer field. Perhaps nowhere has there been more excitement in the field than around the targeted delivery of siRNA or miRNA. However, when industry leaders in the field of siRNA delivery have tried to recapitulate aptamer-siRNA delivery results, they have failed.

View Article and Find Full Text PDF

Traditionally, small pediatric burns are managed with inpatient admission and daily dressing changes. In 2011, our burn center implemented an outpatient short stay (OSS) program in which small pediatric burns were managed as an outpatient utilizing Mepilex AgTM dressings changed under moderate sedation every 5 to 7 days. Pediatric burn cases were queried for 2 time periods: before the OSS program (2009-2010) and after the OSS program (2013-2014).

View Article and Find Full Text PDF

The macrolides are a class of antibiotic, characterized by a large macrocyclic lactone ring that can be inactivated by macrolide phosphotransferase enzymes. We present structures for MPH(2')-I and MPH(2')-II in the apo state, and in complex with GTP analogs and six different macrolides. These represent the first structures from the two main classes of macrolide phosphotransferases.

View Article and Find Full Text PDF

Delivery of toxins, such as the ricin A chain, Pseudomonas exotoxin, and gelonin, using antibodies has had some success in inducing specific toxicity in cancer treatments. However, these antibody-toxin conjugates, called immunotoxins, can be bulky, difficult to express, and may induce an immune response upon in vivo administration. We previously reported delivery of a recombinant variant of gelonin (rGel) by the full-length prostate-specific membrane antigen (PSMA) binding aptamer, A9, to potentially circumvent some of these problems.

View Article and Find Full Text PDF

Aptamer technology allows for the selection of nucleic acids that can bind to and enter cells. By establishing conditions during the selection that eliminate cell-surface binders as well as non-internalizing RNAs, only extremely tightly bound aptamers or aptamers that have internalized are recovered. We describe a general scheme for selecting RNA molecules that are capable of internalizing into cells and discuss the factors that can affect a successful selection.

View Article and Find Full Text PDF
Article Synopsis
  • The transferrin receptor, CD71, is a promising target for drug development due to its high expression in various cancer cells and the blood-brain barrier.
  • Researchers modified the aptamer selection process to create RNA molecules that specifically bind to and are internalized by the human transferrin receptor, resulting in a minimized variant that outcompetes natural transferrin for binding.
  • Using this optimized aptamer, scientists created targeted liposomes carrying siRNA, which significantly enhanced cellular uptake and gene knockdown compared to standard liposomes, suggesting its potential for applications like cell imaging and targeted drug delivery.
View Article and Find Full Text PDF

We have developed a selection scheme to generate nucleic acid sequences that recognize and directly internalize into mammalian cells without the aid of conventional delivery methods. To demonstrate the generality of the technology, two independent selections with different starting pools were performed against distinct target cells. Each selection yielded a single highly functional sequence, both of which folded into a common core structure.

View Article and Find Full Text PDF

Humans express nine paralogs of the bacterial DNA repair enzyme AlkB, an iron/2-oxoglutarate-dependent dioxygenase that reverses alkylation damage to nucleobases. The biochemical and physiological roles of these paralogs remain largely uncharacterized, hampering insight into the evolutionary expansion of the AlkB family. However, AlkB homolog 8 (ABH8), which contains RNA recognition motif (RRM) and methyltransferase domains flanking its AlkB domain, recently was demonstrated to hypermodify the anticodon loops in some tRNAs.

View Article and Find Full Text PDF

The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is the standard method for bioorthogonal conjugation. However, current Cu(I) catalyst formulations are toxic, hindering their use in living systems. Here we report that BTTES, a tris(triazolylmethyl)amine-based ligand for Cu(I), promotes the cycloaddition reaction rapidly in living systems without apparent toxicity.

View Article and Find Full Text PDF

When aptamers first emerged almost two decades ago, most were RNA species that bound and tagged or inhibited simple target ligands. Very soon after, the 'selectionologists' developing aptamer technology quickly realized more potential for the aptamer. In recent years, advances in aptamer techniques have enabled the use of aptamers as small molecule inhibitors, diagnostic tools and even therapeutics.

View Article and Find Full Text PDF

Inflammation is an important risk factor for cancer. During inflammation, macrophages secrete nitric oxide (NO*), which reacts with superoxide or oxygen to create ONOO- or N2O3, respectively. Although homologous recombination causes DNA sequence rearrangements that promote cancer, little was known about the ability of ONOO- and N2O3 to induce recombination in mammalian cells.

View Article and Find Full Text PDF

Most biopolymer drugs to date have been proteins. However, the ability to select nucleic acid binding species (aptamers) has led to the development of protein inhibitors and modulators that are small, readily synthesized nucleic acids. The techniques for optimizing, stabilizing, and delivering nucleic acid therapies are just beginning to be developed, but the same engineering flexibility that has so far allowed the generation of multiple, high affinity and specificity binding species appears to also apply to the methods for adapting nucleic acids to clinical applications.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Amy Yan"

  • - Amy Yan’s research primarily focuses on the development and optimization of aptamers and their applications in therapeutics, particularly in targeting specific cellular functions and disease mechanisms, as evidenced by her work on both EXosite-ACTive site inhibitors and cancer cell targeting aptamers.
  • - Recent findings reveal promising advancements in cell sorting and treatment for traumatic brain injury, emphasizing the potential of aptamer-based technologies to revolutionize both diagnostics and therapeutics within the realm of complex biological systems.
  • - Yan’s exploration of CRISPR/Cas guide RNA optimization and the analysis of vaccine responses in neuromuscular diseases reflects a broad commitment to addressing critical public health issues through innovative molecular strategies.